Welcome to the IKCEST

Thermal Science | Vol.15, Issue.3 | 2017-05-23 | Pages

Thermal Science

A new hybrid algorithm for solving transient combined conduction radiation heat transfer problems

Chaabane Raoudha,Askri Faouzi,Nasrallah Ben Sassi  
Abstract

A new algorithm based on the lattice Boltzmann method (LBM) and the Control Volume Finite Element Method (CVFEM) is proposed as an hybrid solver for two dimensional transient conduction and radiation heat transfer problems in an optically emitting, absorbing and scattering medium. The LBM was used to solve the energy equation and the CVFEM was used to compute the radiative information. The advantages of the proposed methodology is to avoid problems that confronted when previous techniques are used to predict radiative heat transfer, essentially, in complex geometries and when there is scattering and/or non-black boundaries surfaces. This method combination, which is applied for the first time to solve this unsteady combined mode of heat transfer, has been found to accurately predict the effects of various thermo-physical parameters such as the scattering albedo, the conduction-radiation parameter and the extinction coefficient on temperature distribution. The results of the LBM-CVFEM combination were found to be in excellent agreement with the LBM-CDM (Collapsed Dimension Method)this proposed numerical approach include, among others, simple implementation on a computer, accurate CPU time, and capability of stable simulation.

Original Text (This is the original text for your reference.)

A new hybrid algorithm for solving transient combined conduction radiation heat transfer problems

A new algorithm based on the lattice Boltzmann method (LBM) and the Control Volume Finite Element Method (CVFEM) is proposed as an hybrid solver for two dimensional transient conduction and radiation heat transfer problems in an optically emitting, absorbing and scattering medium. The LBM was used to solve the energy equation and the CVFEM was used to compute the radiative information. The advantages of the proposed methodology is to avoid problems that confronted when previous techniques are used to predict radiative heat transfer, essentially, in complex geometries and when there is scattering and/or non-black boundaries surfaces. This method combination, which is applied for the first time to solve this unsteady combined mode of heat transfer, has been found to accurately predict the effects of various thermo-physical parameters such as the scattering albedo, the conduction-radiation parameter and the extinction coefficient on temperature distribution. The results of the LBM-CVFEM combination were found to be in excellent agreement with the LBM-CDM (Collapsed Dimension Method)this proposed numerical approach include, among others, simple implementation on a computer, accurate CPU time, and capability of stable simulation.

+More

Cite this article
APA

APA

MLA

Chicago

Chaabane Raoudha,Askri Faouzi,Nasrallah Ben Sassi,.A new hybrid algorithm for solving transient combined conduction radiation heat transfer problems. 15 (3),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel