Welcome to the IKCEST

Image Processing On Line | Vol.6, Issue. | 2017-05-23 | Pages

Image Processing On Line

On the Implementation of Collaborative TV Regularization: Application to Cartoon+Texture Decomposition

Joan Duran,Michael Moeller,Catalina Sbert,Daniel Cremers  
Abstract

This paper deals with the analysis, implementation, and comparison of several vector-valued total variation (TV) methods that extend the Rudin-Osher-Fatemi variational model to color images. By considering the discrete gradient of a multichannel image as a 3D structure matrix with dimensions corresponding to the spatial extend, the differences to other pixels and the color channels, we introduce in [J. Duran, M. Moeller, C. Sbert, and D. Cremers, 'Collaborative Total Variation: A General Framework for Vectorial TV Models', SIAM Journal on Imaging Sciences, 9(1), pp.116-151, 2016] collaborative sparsity enforcing norms for penalizing the resulting tensor. We call this class of regularizations collaborative total variation (CTV). We first analyze the denoising properties of each collaborative norm for suppressing color artifacts while preserving image features and aligning edges. We then describe the primal-dual hybrid gradient method for solving the minimization problem in detail. The resulting CTV–L2 variational model can successfully be applied to many image processing tasks. On the one hand, an extensive performance comparison of several collaborative norms for color image denoising is provided. On the other hand, we analyze the ability of different CTV methods for decomposing a multichannel image into a cartoon and a textural part. Finally, we also include a short discussion on alternative minimization methods and compare their computational efficiency.

Original Text (This is the original text for your reference.)

On the Implementation of Collaborative TV Regularization: Application to Cartoon+Texture Decomposition

This paper deals with the analysis, implementation, and comparison of several vector-valued total variation (TV) methods that extend the Rudin-Osher-Fatemi variational model to color images. By considering the discrete gradient of a multichannel image as a 3D structure matrix with dimensions corresponding to the spatial extend, the differences to other pixels and the color channels, we introduce in [J. Duran, M. Moeller, C. Sbert, and D. Cremers, 'Collaborative Total Variation: A General Framework for Vectorial TV Models', SIAM Journal on Imaging Sciences, 9(1), pp.116-151, 2016] collaborative sparsity enforcing norms for penalizing the resulting tensor. We call this class of regularizations collaborative total variation (CTV). We first analyze the denoising properties of each collaborative norm for suppressing color artifacts while preserving image features and aligning edges. We then describe the primal-dual hybrid gradient method for solving the minimization problem in detail. The resulting CTV–L2 variational model can successfully be applied to many image processing tasks. On the one hand, an extensive performance comparison of several collaborative norms for color image denoising is provided. On the other hand, we analyze the ability of different CTV methods for decomposing a multichannel image into a cartoon and a textural part. Finally, we also include a short discussion on alternative minimization methods and compare their computational efficiency.

+More

Cite this article
APA

APA

MLA

Chicago

Joan Duran,Michael Moeller,Catalina Sbert,Daniel Cremers,.On the Implementation of Collaborative TV Regularization: Application to Cartoon+Texture Decomposition. 6 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel