IET Image Processing | Vol.12, Issue.7 | | Pages 1079-1085
Image segmentation fusion using weakly supervised trace-norm multi-task learning method
In this study, the authors propose a new method to fuse multiple segmentations generated by different methods or same methods with different parameters. The proposed method has several contributions. First, they convert the image segmentation fusion problem into a weakly supervised learning problem. Thus, the information of superpixels can be used to guide the fusion process. Second, they treat the multiple segmentations as multiple closely related tasks and utilise multi-task learning method to evaluate the reliability of the segmentations. Third, they design a strategy to ensemble the evaluated segmentation maps to obtain the final segmentation. The experiment on the benchmark dataset MSRC demonstrates the superior performance of the proposed method on image foreground and background segmentations.
Original Text (This is the original text for your reference.)
Image segmentation fusion using weakly supervised trace-norm multi-task learning method
In this study, the authors propose a new method to fuse multiple segmentations generated by different methods or same methods with different parameters. The proposed method has several contributions. First, they convert the image segmentation fusion problem into a weakly supervised learning problem. Thus, the information of superpixels can be used to guide the fusion process. Second, they treat the multiple segmentations as multiple closely related tasks and utilise multi-task learning method to evaluate the reliability of the segmentations. Third, they design a strategy to ensemble the evaluated segmentation maps to obtain the final segmentation. The experiment on the benchmark dataset MSRC demonstrates the superior performance of the proposed method on image foreground and background segmentations.
+More
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: