Welcome to the IKCEST

Magnetic Resonance in Chemistry | Vol.56, Issue.56 | | Pages 619-632

Magnetic Resonance in Chemistry

Hyperpolarized Laplace NMR

Ville‐VeikkoTelkki  
Abstract

Laplace nuclear magnetic resonance (NMR), dealing with NMR relaxation and diffusion experiments, reveals details of molecular motion and provides chemical resolution complementary to NMR spectra. Laplace NMR has witnessed a great progress in past decades due to the development of methodology and signal processing, and it has lots of extremely interesting applications in various fields, including chemistry, biochemistry, geology, archaeology, and medicine. The aim of this minireview is to give a pedagogically oriented overview of Laplace NMR. It does not provide a full literature review of the field, but, instead, it elucidate the benefits and features of Laplace NMR methods through few selected examples. The minireview describes also recent progress in multidimensional Laplace NMR and Laplace inversion methods. Furthermore, the potential of modern hyperpolarization methods as well as ultrafast approach to increase the sensitivity and time‐efficiency of the Laplace NMR experiments is highlighted.

Original Text (This is the original text for your reference.)

Hyperpolarized Laplace NMR

Laplace nuclear magnetic resonance (NMR), dealing with NMR relaxation and diffusion experiments, reveals details of molecular motion and provides chemical resolution complementary to NMR spectra. Laplace NMR has witnessed a great progress in past decades due to the development of methodology and signal processing, and it has lots of extremely interesting applications in various fields, including chemistry, biochemistry, geology, archaeology, and medicine. The aim of this minireview is to give a pedagogically oriented overview of Laplace NMR. It does not provide a full literature review of the field, but, instead, it elucidate the benefits and features of Laplace NMR methods through few selected examples. The minireview describes also recent progress in multidimensional Laplace NMR and Laplace inversion methods. Furthermore, the potential of modern hyperpolarization methods as well as ultrafast approach to increase the sensitivity and time‐efficiency of the Laplace NMR experiments is highlighted.

+More

Cite this article
APA

APA

MLA

Chicago

Ville‐VeikkoTelkki,.Hyperpolarized Laplace NMR. 56 (56),619-632.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel