Welcome to the IKCEST

Granular Matter | Vol.22, Issue.3 | 2020-05-22 | Pages 1-17

Granular Matter

Effects of material properties on the mobility of granular flow

Giang D. Nguyen   Ha H. Bui   Nhu H. T. Nguyen  
Abstract

In this study, we investigate the influence of material properties on the mobility of granular flow through granular column collapse experiments using the

Original Text (This is the original text for your reference.)

Effects of material properties on the mobility of granular flow

In this study, we investigate the influence of material properties on the mobility of granular flow through granular column collapse experiments using the

+More

Cite this article
APA

APA

MLA

Chicago

Giang D. Nguyen,Ha H. Bui,Nhu H. T. Nguyen,.Effects of material properties on the mobility of granular flow. 22 (3),1-17.

References

Nguyen, C.T., Nguyen, C.T., Bui, H.H., Nguyen, G.D., Fukagawa, R.: A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation. Landslides 14(1), 69–81 (2017)

Bui, H.H., Fukagawa, R., Sako, K., Ohno, S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int. J. Numer. Anal. Meth. Geomech. 32(12), 1537–1570 (2008)

Holsapple, K.A.: Modeling granular material flows: the angle of repose, fluidization and the cliff collapse problem. Planet. Space Sci. 82, 11–26 (2013)

Bui, H.H., Fukagawa, R., Sato, K.: Smoothed particle hydrodynamics for soil mechanics. In: Proceedings of Numerical Methods in Geotechnical Engineering, Graz, pp. 275–281 (2006).

Trepanier, M., Franklin, S.V.: Column collapse of granular rods. Phys. Rev. E 82(1), 011308 (2010)

Lube, G., Huppert, H.E., Sparks, R.S.J., Freundt, A.: Collapses of two-dimensional granular columns. Phys. Rev. E 72(4), 041301 (2005)

Balmforth, N.J., Kerswell, R.R.: Granular collapse in two dimensions. J. Fluid Mech. 538, 399–428 (2005)

Girolami, L., Hergault, V., Vinay, G., Wachs, A.: A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: comparison between numerical results and experiments. Granular Matter 14(3), 381–392 (2012)

Ionescu, I.R., Mangeney, A., Bouchut, F., Roche, O.: Viscoplastic modeling of granular column collapse with pressure-dependent rheology. J. Nonnewton. Fluid Mech. 219, 1–18 (2015)

Zenit, R.: Computer simulations of the collapse of a granular column. Phys. Fluids 17(3), 031703 (2005)

Lajeunesse, E., Mangeney-Castelnau, A., Vilotte, J.P.: Spreading of a granular mass on a horizontal plane. Phys. Fluids 16(7), 2371–2381 (2004)

Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

Bui, H.H., Kodikara, J.K., Bouazza, A., Haque, A., Ranjith, P.G.: A novel computational approach for large deformation and post-failure analyses of segmental retaining wall systems. Int. J. Numer. Anal. Methods Geomech. 38(13), 1321–1340 (2014)

Utili, S., Zhao, T., Houlsby, G.T.: 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power. Eng. Geol. 186, 3–16 (2015)

Lajeunesse, E., Monnier, J.B., Homsy, G.M.: Granular slumping on a horizontal surface. Phys. Fluids 17(10), 103302 (2005)

Bui, H.H., Fukagawa, R., Sako, K., Wells, J.C.: Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH). Geotechnique 61(7), 565–574 (2011)

Kermani, E., Qiu, T., Li, T.: Simulation of collapse of granular columns using the discrete element method. Int. J. Geomech. 15(6), 04015004 (2015)

Staron, L., Hinch, E.J.: The spreading of a granular mass: role of grain properties and initial conditions. Granular Matter 9(3–4), 205 (2007)

Lube, G., Huppert, H.E., Sparks, R.S.J., Hallworth, M.A.: Axisymmetric collapses of granular columns. J. Fluid Mech. 508, 175–199 (2004)

Morris, J., Johnson, S.: Dynamic simulations of geological materials using combined FEM/DEM/SPH analysis. Geomech. Geoeng.: Int. J. 4(1), 91–101 (2009)

Moriguchi, S., Borja, R.I., Yashima, A., Sawada, K.: Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech. 4(1), 57–71 (2009)

Bui HH, Nguyen GD: Numerical predictions of post‐flow behaviour of granular materials using an improved SPH model. In: CIGOS 2019, Innovation for Sustainable Infrastructure, pp. 895–900. Singapore: Springer, (2020).

Newland, P.L., Allely, B.H.: Volume changes in drained taixial tests on granular materials. Geotechnique 7(1), 17–34 (1957)

Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

Lagrée, P.Y., Staron, L., Popinet, S.: The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ (I)-rheology. J. Fluid Mech. 686, 378–408 (2011)

Reynolds, O.: LVII. On the dilatancy of media composed of rigid particles in contact. With experimental illustrations. Lond. Edinb. Dublin Philos. Mag. J. Sci. 20(127), 469–481 (1885)

Zhang, X., Krabbenhoft, K., Pedroso, D.M., Lyamin, A.V., Sheng, D., Da Silva, M.V., Wang, D.: Particle finite element analysis of large deformation and granular flow problems. Comput. Geotech. 54, 133–142 (2013)

Staron, L., Hinch, E.J.: Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 1–27 (2005)

Mast, C.M., Arduino, P., Mackenzie-Helnwein, P., Miller, G.R.: Simulating granular column collapse using the material point method. Acta Geotech. 10(1), 101–116 (2015)

Roche, O., Attali, M., Mangeney, A., Lucas, A.: On the run-out distance of geophysical gravitational flows: Insight from fluidized granular collapse experiments. Earth Planet. Sci. Lett. 311(3–4), 375–385 (2011)

Chen, W., Qiu, T.: Numerical simulations for large deformation of granular materials using smoothed particle hydrodynamics method. Int. J. Geomech. 12(2), 127–135 (2011)

Mizuno, E., Chen, W.F.: Nonlinear Analysis in Soil Mechanics: Theory and Implementation. Elsevier, Amsterdam (1990)

Rowe, P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 269(1339), 500–527 (1962)

Nguyen, C.T., Bui, H.H., Fukagawa, R.: Failure mechanism of true 2D granular flows. J. Chem. Eng. Jpn. 48(6), 395–402 (2015)

Warnett, J.M., Denissenko, P., Thomas, P.J., Kiraci, E., Williams, M.A.: Scalings of axisymmetric granular column collapse. Granular Matter 16(1), 115–124 (2014)

Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441(7094), 727 (2006)

Liu, G.R.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003)

Lacaze, L., Phillips, J.C., Kerswell, R.R.: Planar collapse of a granular column: experiments and discrete element simulations. Phys. Fluids 20(6), 063302 (2008)

Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R., Allahdadi, F.A.: High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J. Comput. Phys. 109(1), 67–75 (1993)

Crosta, G.B., Imposimato, S., Roddeman, D.: Numerical modeling of 2‐D granular step collapse on erodible and nonerodible surface. J. Geophys. Res. Earth Surf. 114(F03020) (2009)

Yang, E., Bui, H.H., De Sterck, H., Nguyen, G.D., Bouazza, A.: A scalable parallel computing SPH framework for predictions of geophysical granular flows. Comput. Geotech. 121, 103474 (2006)

Bui, H.H., Fukagawa, R.: An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: Case of hydrostatic pore-water pressure. Int. J. Numer. Anal. Methods Geomech. 37(1), 31–50 (2013)

Lade, P.V., Nelson, R.B.: Modelling the elastic behaviour of granular materials. Int. J. Numer. Anal. Methods Geomech. 11(5), 521–542 (1987)

Sołowski, W.T., Sloan, S.W.: Evaluation of material point method for use in geotechnics. Int. J. Numer. Anal. Methods Geomech. 39(7), 685–701 (2015)

Randles, P.W., Libersky, L.D.: Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 375–408 (1996)

Monaghan, J.J., Lattanzio, J.C.: A refined particle method for astrophysical problems. Astron. Astrophys. 149, 135–143 (1985)

Bolton, M.D.: Strength and dilatancy of sands. Geotechnique 36(1), 65–78 (1986)

Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. The Astron. J. 82, 1013–1024 (1977)

MiDi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14(4), 341–365 (2004)

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel