Welcome to the IKCEST

Applied Mathematical Modelling | Vol.85, Issue. | 2020-08-31 | Pages 338-359

Applied Mathematical Modelling

Non-stationary nonlinear analysis of a composite rotating shaft passing through critical speed

S.A.A. Hosseini   H.R. Kafi  
Abstract

In this paper, nonlinear non-stationary dynamics of a nonlinear composite shaft passing through critical speed is studied. The nonlinearity is due to the large amplitude of shaft vibration. The equations of motion are obtained by three-dimensional constitutive relationships of composite materials. The gyroscopic effect, rotary inertia and coupling caused by material anisotropy are considered but shear deformation is neglected. Without any simplification, axial-flexural-flexural-torsional equations of motion (EOM) for the elastic composite shaft with variable rotational speed are obtained. The approximate analytical method namely asymptotic method is applied to analyze the nonstationary behavior of the composite shaft with constant acceleration. First, the EOMs are discretized using one and two-term Galerkin method. Then, the resulted equations are transformed to normal coordinates. Finally, the asymptotic method is applied to equations described in normal coordinates. Analytical expressions governing the amplitude and phase of motion during passage through critical speeds are obtained. By comparing the results obtained from analytical solutions, it is shown that discretization by one mode is not enough due to the existence of coupling in the equations and at least two modes are necessary for this purpose. Effects of damping, eccentricity, initial angular velocity and fiber angle on response amplitude are investigated. For verification, the results of perturbation theory are compared with numerical simulations and it is shown that there is good agreement between both methods.

Original Text (This is the original text for your reference.)

Non-stationary nonlinear analysis of a composite rotating shaft passing through critical speed

In this paper, nonlinear non-stationary dynamics of a nonlinear composite shaft passing through critical speed is studied. The nonlinearity is due to the large amplitude of shaft vibration. The equations of motion are obtained by three-dimensional constitutive relationships of composite materials. The gyroscopic effect, rotary inertia and coupling caused by material anisotropy are considered but shear deformation is neglected. Without any simplification, axial-flexural-flexural-torsional equations of motion (EOM) for the elastic composite shaft with variable rotational speed are obtained. The approximate analytical method namely asymptotic method is applied to analyze the nonstationary behavior of the composite shaft with constant acceleration. First, the EOMs are discretized using one and two-term Galerkin method. Then, the resulted equations are transformed to normal coordinates. Finally, the asymptotic method is applied to equations described in normal coordinates. Analytical expressions governing the amplitude and phase of motion during passage through critical speeds are obtained. By comparing the results obtained from analytical solutions, it is shown that discretization by one mode is not enough due to the existence of coupling in the equations and at least two modes are necessary for this purpose. Effects of damping, eccentricity, initial angular velocity and fiber angle on response amplitude are investigated. For verification, the results of perturbation theory are compared with numerical simulations and it is shown that there is good agreement between both methods.

+More

Cite this article
APA

APA

MLA

Chicago

S.A.A. Hosseini,H.R. Kafi,.Non-stationary nonlinear analysis of a composite rotating shaft passing through critical speed. 85 (),338-359.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel