Welcome to the IKCEST

Journal of Real-Time Image Processing | Vol.15, Issue.3 | | Pages 477–494

Journal of Real-Time Image Processing

Real-time deep satellite image quality assessment

Masayoshi Aritsugi   Risnandar   
Abstract

A method for deep satellite image quality assessment based on no-reference satellite images is proposed. We design suitable deep convolutional neural networks, which are named satellite image quality assessment of deep convolutional neural networks (SIQA-DCNN) and SIQA-DCNN++. These sophisticated methods can remove various distorted satellite images in real-time remote sensing. The novelty of this method lies in the objective assessment and restoration of the deep model which understands various distorted satellite images in high- and low-resolution problems. The activation function has a lower computational time and ensures the deactivation of noise by making the mean activators close to zero. Our methods are also effective for transfer learning, which can be used to adequately investigate satellite image classification in deep satellite image quality assessment. Using Spearman’s rank order correlation coefficient (SROCC) and linear correlation coefficient (LCC) evaluations, we demonstrated that our methods show better performance than other algorithms, with more than 0.90 of SROCC and LCC values compared to the full-reference and no-reference satellite image in MODIS/Terra and USGS datasets. Regarding computational complexity, we obtained better performance in operational function times. As compared to other methods, SIQA-DCNN and SIQA-DCNN++ also reduced computational time by more than 40 and 56%, respectively, when applied to the USGS dataset, and by more than 46 and 60% respectively, when applied to the MODIS/Terra dataset.

Original Text (This is the original text for your reference.)

Real-time deep satellite image quality assessment

A method for deep satellite image quality assessment based on no-reference satellite images is proposed. We design suitable deep convolutional neural networks, which are named satellite image quality assessment of deep convolutional neural networks (SIQA-DCNN) and SIQA-DCNN++. These sophisticated methods can remove various distorted satellite images in real-time remote sensing. The novelty of this method lies in the objective assessment and restoration of the deep model which understands various distorted satellite images in high- and low-resolution problems. The activation function has a lower computational time and ensures the deactivation of noise by making the mean activators close to zero. Our methods are also effective for transfer learning, which can be used to adequately investigate satellite image classification in deep satellite image quality assessment. Using Spearman’s rank order correlation coefficient (SROCC) and linear correlation coefficient (LCC) evaluations, we demonstrated that our methods show better performance than other algorithms, with more than 0.90 of SROCC and LCC values compared to the full-reference and no-reference satellite image in MODIS/Terra and USGS datasets. Regarding computational complexity, we obtained better performance in operational function times. As compared to other methods, SIQA-DCNN and SIQA-DCNN++ also reduced computational time by more than 40 and 56%, respectively, when applied to the USGS dataset, and by more than 46 and 60% respectively, when applied to the MODIS/Terra dataset.

+More

Cite this article
APA

APA

MLA

Chicago

Masayoshi Aritsugi,Risnandar ,.Real-time deep satellite image quality assessment. 15 (3),477–494.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel