Welcome to the IKCEST

Journal of Aerosol Science | Vol., Issue. | | Pages

Journal of Aerosol Science

Electrosprays in the cone-jet mode: From Taylor cone formation to spray development

Joan Rosell-Llompart   Jordi Grifoll   Ignacio G. Loscertales  
Abstract

Electrospray is a relatively mature research field, with sustained and growing activity. It has attracted researchers from diverse application fields. Electrospray is perhaps best known as a tool which has enabled the mass spectrometry analysis of large biomolecules (proteins and DNA). It has also been proposed as a colloidal thruster for spacecraft propulsion. And also, it has been used as a general methodology for converting precursor droplets to microspheres and other particle morphologies and films, with controlled nanostructure. In parallel to this body of applied research, other efforts have been aimed at improving the understanding of the underlying physics of electrosprays. While many reviews exist on applications of this system, wherein the physics of the process is described to a certain extent, the present review focuses on the fundamentals. We begin by describing the different modes developing in liquid menisci to which an electrical potential is applied. Due to its applications, the mode of greatest interest is the cone-jet mode in which a steady microscopic jet is emitted and breaks up periodically into uniformly sized droplets. The physics of this mode is then explored in detail, first by reviewing the remarkable effort in the field aimed at identifying so called scaling laws. These are simple scaling relationships connecting the variables of the problem which can be applicable to many operating conditions. We then describe the dynamics of generation of the jet which emerges from the electrified conical meniscus, as well as the physics associated with the spray plume development. We conclude with the extension of these concepts to multi-fluid configurations, such as coaxial and parallel flows.

Original Text (This is the original text for your reference.)

Electrosprays in the cone-jet mode: From Taylor cone formation to spray development

Electrospray is a relatively mature research field, with sustained and growing activity. It has attracted researchers from diverse application fields. Electrospray is perhaps best known as a tool which has enabled the mass spectrometry analysis of large biomolecules (proteins and DNA). It has also been proposed as a colloidal thruster for spacecraft propulsion. And also, it has been used as a general methodology for converting precursor droplets to microspheres and other particle morphologies and films, with controlled nanostructure. In parallel to this body of applied research, other efforts have been aimed at improving the understanding of the underlying physics of electrosprays. While many reviews exist on applications of this system, wherein the physics of the process is described to a certain extent, the present review focuses on the fundamentals. We begin by describing the different modes developing in liquid menisci to which an electrical potential is applied. Due to its applications, the mode of greatest interest is the cone-jet mode in which a steady microscopic jet is emitted and breaks up periodically into uniformly sized droplets. The physics of this mode is then explored in detail, first by reviewing the remarkable effort in the field aimed at identifying so called scaling laws. These are simple scaling relationships connecting the variables of the problem which can be applicable to many operating conditions. We then describe the dynamics of generation of the jet which emerges from the electrified conical meniscus, as well as the physics associated with the spray plume development. We conclude with the extension of these concepts to multi-fluid configurations, such as coaxial and parallel flows.

+More

Cite this article
APA

APA

MLA

Chicago

Joan Rosell-Llompart, Jordi Grifoll, Ignacio G. Loscertales,.Electrosprays in the cone-jet mode: From Taylor cone formation to spray development. (),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel