Welcome to the IKCEST

IEEE Transactions on Emerging Topics in Computing | Vol.4, Issue.3 | | Pages 363-373

IEEE Transactions on Emerging Topics in Computing

Can Algorithm Diversity in Stream Cipher Implementation Thwart (Natural and) Malicious Faults?

David Hé   Xiaofei Guo   ly   Ramesh Karri   Chi Zhang   Athanasios Papadimitriou   Chenglu Jin  
Abstract

Hardware implementations of stream and other ciphers are vulnerable to natural faults. Moreover, attackers can launch fault attacks on these implementations. Concurrent error detection is used as a countermeasure against natural and malicious faults. We propose an algorithm diversity (AD) to detect natural and malicious faults in stream ciphers. We compare AD with hardware, time, and information redundancies. Hardware redundancy has 100% hardware overhead, but is not secure against fault attacks. Time redundancy has lower hardware overhead, but is vulnerable to faults that are injected in both the computation and recomputation. Information redundancy techniques, such as parity, cannot detect an even number of faulty bits. Information redundancy techniques, such as robust code, have higher fault miss rate (FMR) with higher hardware overhead. If robust code is configured to have lower FMR than AD in certain attacker model, the hardware overhead is excessively high. AD provides higher security compared to existing techniques. It enables a cost-effective tradeoff between security, performance overhead, and hardware overhead.

Original Text (This is the original text for your reference.)

Can Algorithm Diversity in Stream Cipher Implementation Thwart (Natural and) Malicious Faults?

Hardware implementations of stream and other ciphers are vulnerable to natural faults. Moreover, attackers can launch fault attacks on these implementations. Concurrent error detection is used as a countermeasure against natural and malicious faults. We propose an algorithm diversity (AD) to detect natural and malicious faults in stream ciphers. We compare AD with hardware, time, and information redundancies. Hardware redundancy has 100% hardware overhead, but is not secure against fault attacks. Time redundancy has lower hardware overhead, but is vulnerable to faults that are injected in both the computation and recomputation. Information redundancy techniques, such as parity, cannot detect an even number of faulty bits. Information redundancy techniques, such as robust code, have higher fault miss rate (FMR) with higher hardware overhead. If robust code is configured to have lower FMR than AD in certain attacker model, the hardware overhead is excessively high. AD provides higher security compared to existing techniques. It enables a cost-effective tradeoff between security, performance overhead, and hardware overhead.

+More

Cite this article
APA

APA

MLA

Chicago

David Hé,Xiaofei Guo,ly, Ramesh Karri, Chi Zhang, Athanasios Papadimitriou, Chenglu Jin,.Can Algorithm Diversity in Stream Cipher Implementation Thwart (Natural and) Malicious Faults?. 4 (3),363-373.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel