Welcome to the IKCEST

IEEE Transactions on Neural Systems and Rehabilitation Engineering | Vol.26, Issue.3 | | Pages 687-697

IEEE Transactions on Neural Systems and Rehabilitation Engineering

Perceptual and Model-Based Evaluation of Ideal Time-Frequency Noise Reduction in Hearing-Impaired Listeners

Ian C. Bruce   Jan Wouters   Sam Denys   Raphael Koning  
Abstract

State-of-the-art hearing aids (HAs) try to overcome the deficit of poor speech intelligibility (SI) in noisy listening environments using digital noise reduction (NR) techniques. The application of time-frequency masks to the noisy sound input is a common NR technique to increase SI. The binary mask with its binary weights and the Wiener filter with continuous weights are representatives of a hard- and a soft-decision approach for time-frequency masking. In normal-hearing listeners, the ideal Wiener filter (IWF) outperforms the ideal binary mask (IBM) in terms of SI and speech quality with perfect SI even at very low signal-to-noise ratios. In this paper, both approaches were investigated for hearing-impaired (HI) listeners. Perceptual and auditory model-based measures were used for the evaluation. The IWF outperformed the IBM in terms of SI. Quality-wise, there was no overall difference between the NR algorithms perceived. Additionally, the processed signals were evaluated based on an auditory nerve model using the neurogram similarity metric (NSIM). The mean NSIM values were significantly different for intelligible and unintelligible sentences. The results suggest that a soft-mask seems to be promising for application in HAs.

Original Text (This is the original text for your reference.)

Perceptual and Model-Based Evaluation of Ideal Time-Frequency Noise Reduction in Hearing-Impaired Listeners

State-of-the-art hearing aids (HAs) try to overcome the deficit of poor speech intelligibility (SI) in noisy listening environments using digital noise reduction (NR) techniques. The application of time-frequency masks to the noisy sound input is a common NR technique to increase SI. The binary mask with its binary weights and the Wiener filter with continuous weights are representatives of a hard- and a soft-decision approach for time-frequency masking. In normal-hearing listeners, the ideal Wiener filter (IWF) outperforms the ideal binary mask (IBM) in terms of SI and speech quality with perfect SI even at very low signal-to-noise ratios. In this paper, both approaches were investigated for hearing-impaired (HI) listeners. Perceptual and auditory model-based measures were used for the evaluation. The IWF outperformed the IBM in terms of SI. Quality-wise, there was no overall difference between the NR algorithms perceived. Additionally, the processed signals were evaluated based on an auditory nerve model using the neurogram similarity metric (NSIM). The mean NSIM values were significantly different for intelligible and unintelligible sentences. The results suggest that a soft-mask seems to be promising for application in HAs.

+More

Cite this article
APA

APA

MLA

Chicago

Ian C. Bruce, Jan Wouters, Sam Denys,Raphael Koning,.Perceptual and Model-Based Evaluation of Ideal Time-Frequency Noise Reduction in Hearing-Impaired Listeners. 26 (3),687-697.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel