IEEE Transactions on Circuits and Systems for Video Technology | Vol.28, Issue.2 | | Pages 439-453
Explicit Edge Inconsistency Evaluation Model for Color-Guided Depth Map Enhancement
Color-guided depth enhancement is used to refine depth maps according to the assumption that the depth edges and the color edges at the corresponding locations are consistent. In methods on such low-level vision tasks, the Markov random field (MRF), including its variants, is one of the major approaches that have dominated this area for several years. However, the assumption above is not always true. To tackle the problem, the state-of-the-art solutions are to adjust the weighting coefficient inside the smoothness term of the MRF model. These methods lack an explicit evaluation model to quantitatively measure the inconsistency between the depth edge map and the color edge map, so they cannot adaptively control the efforts of the guidance from the color image for depth enhancement, leading to various defects such as texture-copy artifacts and blurring depth edges. In this paper, we propose a quantitative measurement on such inconsistency and explicitly embed it into the smoothness term. The proposed method demonstrates promising experimental results compared with the benchmark and state-of-the-art methods on the Middlebury ToF-Mark, and NYU data sets.
Original Text (This is the original text for your reference.)
Explicit Edge Inconsistency Evaluation Model for Color-Guided Depth Map Enhancement
Color-guided depth enhancement is used to refine depth maps according to the assumption that the depth edges and the color edges at the corresponding locations are consistent. In methods on such low-level vision tasks, the Markov random field (MRF), including its variants, is one of the major approaches that have dominated this area for several years. However, the assumption above is not always true. To tackle the problem, the state-of-the-art solutions are to adjust the weighting coefficient inside the smoothness term of the MRF model. These methods lack an explicit evaluation model to quantitatively measure the inconsistency between the depth edge map and the color edge map, so they cannot adaptively control the efforts of the guidance from the color image for depth enhancement, leading to various defects such as texture-copy artifacts and blurring depth edges. In this paper, we propose a quantitative measurement on such inconsistency and explicitly embed it into the smoothness term. The proposed method demonstrates promising experimental results compared with the benchmark and state-of-the-art methods on the Middlebury ToF-Mark, and NYU data sets.
+More
color image color edges middlebury tofmark and nyu data sets inconsistency weighting coefficient depth enhancement refine depth maps texturecopy artifacts smoothness term of the mrf lowlevel vision tasks depth edge map and the color edge map evaluation model stateoftheart methods markov random field mrf
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: