Biomedical Microdevices | Vol.18, Issue.5 | | Pages
High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques
This article describes a high-efficiency light-induced dielectrophoresis biochip containing a thin film prepared through inductively coupled plasma chemical vapor deposition (ICPCVD). The biochip comprises two ITO glass substrates and a photoconductive amorphous silicon thin film. The biochip can effectively sort particular particles (or cells) by projecting visible light onto the surface of the silicon thin film. The sorting efficiency of biochips is highly associated with the quality of the deposited amorphous silicon thin films; therefore, the choice of deposition technique is extremely critical. However, no study has examined this problem. Hence, the current study thoroughly compared the efficiency of the biochip when films produced through plasma-enhanced chemical vapor deposition and ICPCVD are used.
Original Text (This is the original text for your reference.)
High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques
This article describes a high-efficiency light-induced dielectrophoresis biochip containing a thin film prepared through inductively coupled plasma chemical vapor deposition (ICPCVD). The biochip comprises two ITO glass substrates and a photoconductive amorphous silicon thin film. The biochip can effectively sort particular particles (or cells) by projecting visible light onto the surface of the silicon thin film. The sorting efficiency of biochips is highly associated with the quality of the deposited amorphous silicon thin films; therefore, the choice of deposition technique is extremely critical. However, no study has examined this problem. Hence, the current study thoroughly compared the efficiency of the biochip when films produced through plasma-enhanced chemical vapor deposition and ICPCVD are used.
+More
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: