Welcome to the IKCEST

IEEE Transactions on Neural Systems and Rehabilitation Engineering | Vol.26, Issue.1 | | Pages 144-152

IEEE Transactions on Neural Systems and Rehabilitation Engineering

Automatic Implementation of Progressive FastICA Peel-Off for High Density Surface EMG Decomposition

Maoqi Chen   Xu Zhang   Xiang Chen   Ping Zhou  
Abstract

This study presents automatic decomposition of high density surface electromyogram (EMG) signals through a progressive FastICA peel-off (PFP) framework. By incorporating FastICA, constrained FastICA and a peel-off strategy, the PFP can progressively expand the set of motor unit spike trains contributing to the EMG signal. A series of signal processing techniques were applied and integrated in this study to automatically implement the two tasks that often require human operator interaction during application of the PFP framework, including extraction of motor unit spike trains from FastICA outputs and reliability judgment of the extracted motor units. Based on these advances, an automatic PFP (APFP) framework was consequently developed. The decomposition performance of APFP was validated using simulated high density surface EMG signals. The APFP was also evaluated with experimental surface EMG signals, and the decomposition results were comparable to those achieved from the PFP with human operator interaction.

Original Text (This is the original text for your reference.)

Automatic Implementation of Progressive FastICA Peel-Off for High Density Surface EMG Decomposition

This study presents automatic decomposition of high density surface electromyogram (EMG) signals through a progressive FastICA peel-off (PFP) framework. By incorporating FastICA, constrained FastICA and a peel-off strategy, the PFP can progressively expand the set of motor unit spike trains contributing to the EMG signal. A series of signal processing techniques were applied and integrated in this study to automatically implement the two tasks that often require human operator interaction during application of the PFP framework, including extraction of motor unit spike trains from FastICA outputs and reliability judgment of the extracted motor units. Based on these advances, an automatic PFP (APFP) framework was consequently developed. The decomposition performance of APFP was validated using simulated high density surface EMG signals. The APFP was also evaluated with experimental surface EMG signals, and the decomposition results were comparable to those achieved from the PFP with human operator interaction.

+More

Cite this article
APA

APA

MLA

Chicago

Maoqi Chen, Xu Zhang, Xiang Chen, Ping Zhou,.Automatic Implementation of Progressive FastICA Peel-Off for High Density Surface EMG Decomposition. 26 (1),144-152.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel