Computers & Mathematics with Applications | Vol., Issue. | | Pages
Enhanced injection method for synthetically generated turbulence within the flow domain of eddy-resolving simulations
The quality of eddy-resolving turbulence simulations strongly depends on appropriate inflow conditions. In most cases they have to be time-dependent and satisfy certain conditions for the first (mean velocities) and second-order moments (Reynolds stresses) as well as concerning suitable length scales. To mimic a physically realistic incoming flow, synthetically generated turbulent velocity fluctuations superimposed on the mean velocity field are a valuable solution. However, the resolution of the grid near the inlet has to be sufficiently fine to avoid excessive damping of the turbulence intensity. In order to circumvent this problem, the injection of synthetically generated inflow data not at the inlet itself but inside the flow domain near the area of interest, where the grid is typically much finer, is an elegant loophole. In the present study two different injection techniques based on a source-term formulation are analyzed and evaluated. In addition to these techniques the injected data are weighted by a Gaussian distribution defining the influence area. In the recent work the definition of the influence area is enhanced compared to the initial version of Schmidt and Breuer (2017) extending the application range. The case of a rather small influence area in comparison with the grid cell size is now tackled which is often relevant for industrial applications.
Original Text (This is the original text for your reference.)
Enhanced injection method for synthetically generated turbulence within the flow domain of eddy-resolving simulations
The quality of eddy-resolving turbulence simulations strongly depends on appropriate inflow conditions. In most cases they have to be time-dependent and satisfy certain conditions for the first (mean velocities) and second-order moments (Reynolds stresses) as well as concerning suitable length scales. To mimic a physically realistic incoming flow, synthetically generated turbulent velocity fluctuations superimposed on the mean velocity field are a valuable solution. However, the resolution of the grid near the inlet has to be sufficiently fine to avoid excessive damping of the turbulence intensity. In order to circumvent this problem, the injection of synthetically generated inflow data not at the inlet itself but inside the flow domain near the area of interest, where the grid is typically much finer, is an elegant loophole. In the present study two different injection techniques based on a source-term formulation are analyzed and evaluated. In addition to these techniques the injected data are weighted by a Gaussian distribution defining the influence area. In the recent work the definition of the influence area is enhanced compared to the initial version of Schmidt and Breuer (2017) extending the application range. The case of a rather small influence area in comparison with the grid cell size is now tackled which is often relevant for industrial applications.
+More
damping industrial applications eddyresolving turbulence simulations schmidt and breuer injection techniques flow domain generated inflow data incoming gaussian distribution first mean velocities and secondorder moments sourceterm formulation influence area mean velocity field generated turbulent velocity fluctuations superimposed
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: