Welcome to the IKCEST

International Journal of Heat and Mass Transfer | Vol.120, Issue.0 | | Pages

International Journal of Heat and Mass Transfer

Effects of spontaneous nanoparticle adsorption on the bubble-liquid and bubble-bubble interactions in multi-dispersed bubbly systems – A review

Jiyuan Tu   Yang Yuan   Xiangdong Li  
Abstract

Robust predictive models of dynamic bubbly systems of nanoparticle-liquid mixtures are vital to the design and assessment of relevant industrial systems. Previous attempts to model bubbly flows of dilute nanofluids using the classic two-phase flow models were unsuccessful although the apparent hydrodynamic properties of the dilute nanoparticle-liquid mixtures were only negligibly different to those of their pure base liquids. Emerging studies demonstrated that when bubbles exist in the mixture, nanoparticles tend to spontaneously aggregate at the bubble interface, forming a layer of “colloidal armour” and making the bubble interface partially rigid and less mobile. The colloidal armour also significantly modifies the characteristics of the bubble-liquid and bubble-bubble interactions. Therefore, it was proposed that the key job when developing a predictive model based on classic two-phase flow models is to re-formulate the bubble-liquid and bubble-bubble interactions. However, the adsorption of nanoparticles in dynamic bubbly systems has rarely been studied. The lack of mechanistic understanding has severely hindered the model development. Therefore, this study reviews the common findings yielded from experimental and numerical investigations reported in literature, with the aim to clarify the critical points to address when modelling bubbly flows containing nanoparticles using the classic two-fluid and MUSIG models.

Original Text (This is the original text for your reference.)

Effects of spontaneous nanoparticle adsorption on the bubble-liquid and bubble-bubble interactions in multi-dispersed bubbly systems – A review

Robust predictive models of dynamic bubbly systems of nanoparticle-liquid mixtures are vital to the design and assessment of relevant industrial systems. Previous attempts to model bubbly flows of dilute nanofluids using the classic two-phase flow models were unsuccessful although the apparent hydrodynamic properties of the dilute nanoparticle-liquid mixtures were only negligibly different to those of their pure base liquids. Emerging studies demonstrated that when bubbles exist in the mixture, nanoparticles tend to spontaneously aggregate at the bubble interface, forming a layer of “colloidal armour” and making the bubble interface partially rigid and less mobile. The colloidal armour also significantly modifies the characteristics of the bubble-liquid and bubble-bubble interactions. Therefore, it was proposed that the key job when developing a predictive model based on classic two-phase flow models is to re-formulate the bubble-liquid and bubble-bubble interactions. However, the adsorption of nanoparticles in dynamic bubbly systems has rarely been studied. The lack of mechanistic understanding has severely hindered the model development. Therefore, this study reviews the common findings yielded from experimental and numerical investigations reported in literature, with the aim to clarify the critical points to address when modelling bubbly flows containing nanoparticles using the classic two-fluid and MUSIG models.

+More

Cite this article
APA

APA

MLA

Chicago

Jiyuan Tu,Yang Yuan, Xiangdong Li,.Effects of spontaneous nanoparticle adsorption on the bubble-liquid and bubble-bubble interactions in multi-dispersed bubbly systems – A review. 120 (0),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel