Welcome to the IKCEST

Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society | Vol.12, Issue.3 | | Pages 288-94

Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society

Controlling wound bioburden with a novel silver-containing Hydrofiber dressing.

Samantha A, Jones Philip G, Bowler Michael, Walker David, Parsons  
Abstract

Clinicians now recognize that both aerobic and anaerobic microorganisms have the ability to degrade or damage host tissue at a wound site through the production of a variety of enzymes and toxins. Silver-containing dressings offer one method for controlling this polymicrobial wound bioburden, and research efforts are currently ongoing to determine their efficacy against aerobic, anaerobic, and antibiotic-resistant microorganisms. The current study aimed to determine the antimicrobial activity of a new silver-containing Hydrofiber dressing (AQUACEL Ag) on both aerobic and anaerobic microorganisms, using the zone-of-inhibition method. This method provides a measure of the ability of the dressing to make available a sufficient concentration of silver to have an antimicrobial effect. To some extent this test mimics the clinical use of the dressing and predicts its microbicidal activity at the wound-dressing interface. The results show that the silver-containing dressing makes silver available at a dressing-agar interface at a concentration that is effective against a broad range of aerobic, anaerobic, and antibiotic-resistant microorganisms. In the context of wound healing, the results showing antimicrobial activity against antibiotic-resistant microorganisms are particularly important, as the control and eradication of these organisms is a major concern within the health care profession.

Original Text (This is the original text for your reference.)

Controlling wound bioburden with a novel silver-containing Hydrofiber dressing.

Clinicians now recognize that both aerobic and anaerobic microorganisms have the ability to degrade or damage host tissue at a wound site through the production of a variety of enzymes and toxins. Silver-containing dressings offer one method for controlling this polymicrobial wound bioburden, and research efforts are currently ongoing to determine their efficacy against aerobic, anaerobic, and antibiotic-resistant microorganisms. The current study aimed to determine the antimicrobial activity of a new silver-containing Hydrofiber dressing (AQUACEL Ag) on both aerobic and anaerobic microorganisms, using the zone-of-inhibition method. This method provides a measure of the ability of the dressing to make available a sufficient concentration of silver to have an antimicrobial effect. To some extent this test mimics the clinical use of the dressing and predicts its microbicidal activity at the wound-dressing interface. The results show that the silver-containing dressing makes silver available at a dressing-agar interface at a concentration that is effective against a broad range of aerobic, anaerobic, and antibiotic-resistant microorganisms. In the context of wound healing, the results showing antimicrobial activity against antibiotic-resistant microorganisms are particularly important, as the control and eradication of these organisms is a major concern within the health care profession.

+More

Cite this article
APA

APA

MLA

Chicago

Samantha A, Jones Philip G, Bowler Michael, Walker David, Parsons,.Controlling wound bioburden with a novel silver-containing Hydrofiber dressing.. 12 (3),288-94.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel