Welcome to the IKCEST

Information Sciences | Vol.430–431, Issue.0 | | Pages

Information Sciences

Sparse representation based stereoscopic image quality assessment accounting for perceptual cognitive process

Bin Jiang   Yafang Wang   Wen Lu   Jiachen Yang   Qinggang Meng  
Abstract

In this paper, we propose a sparse representation based Reduced-Reference Image Quality Assessment (RR-IQA) index for stereoscopic images from the following two perspectives: 1) Human visual system (HVS) always tries to infer the meaningful information and reduces uncertainty from the visual stimuli, and the entropy of primitive (EoP) can well describe this visual cognitive progress when perceiving natural images. 2) Ocular dominance (also known as binocularity) which represents the interaction between two eyes is quantified by the sparse representation coefficients. Inspired by previous research, the perception and understanding of an image is considered as an active inference process determined by the level of “surprise”, which can be described by EoP. Therefore, the primitives learnt from natural images can be utilized to evaluate the visual information by computing entropy. Meanwhile, considering the binocularity in stereo image quality assessment, a feasible way is proposed to characterize this binocular process according to the sparse representation coefficients of each view. Experimental results on LIVE 3D image databases and MCL database further demonstrate that the proposed algorithm achieves high consistency with subjective evaluation.

Original Text (This is the original text for your reference.)

Sparse representation based stereoscopic image quality assessment accounting for perceptual cognitive process

In this paper, we propose a sparse representation based Reduced-Reference Image Quality Assessment (RR-IQA) index for stereoscopic images from the following two perspectives: 1) Human visual system (HVS) always tries to infer the meaningful information and reduces uncertainty from the visual stimuli, and the entropy of primitive (EoP) can well describe this visual cognitive progress when perceiving natural images. 2) Ocular dominance (also known as binocularity) which represents the interaction between two eyes is quantified by the sparse representation coefficients. Inspired by previous research, the perception and understanding of an image is considered as an active inference process determined by the level of “surprise”, which can be described by EoP. Therefore, the primitives learnt from natural images can be utilized to evaluate the visual information by computing entropy. Meanwhile, considering the binocularity in stereo image quality assessment, a feasible way is proposed to characterize this binocular process according to the sparse representation coefficients of each view. Experimental results on LIVE 3D image databases and MCL database further demonstrate that the proposed algorithm achieves high consistency with subjective evaluation.

+More

Cite this article
APA

APA

MLA

Chicago

Bin Jiang, Yafang Wang, Wen Lu,Jiachen Yang, Qinggang Meng,.Sparse representation based stereoscopic image quality assessment accounting for perceptual cognitive process. 430–431 (0),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel