Welcome to the IKCEST

IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM | Vol.8, Issue.4 | | Pages 867-75

IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM

A spectral approach to protein structure alignment.

Yosi, Shibberu Allen, Holder  
Abstract

A new intrinsic geometry based on a spectral analysis is used to motivate methods for aligning protein folds. The geometry is induced by the fact that a distance matrix can be scaled so that its eigenvalues are positive. We provide a mathematically rigorous development of the intrinsic geometry underlying our spectral approach and use it to motivate two alignment algorithms. The first uses eigenvalues alone and dynamic programming to quickly compute a fold alignment. Family identification results are reported for the Skolnick40 and Proteus300 data sets. The second algorithm extends our spectral method by iterating between our intrinsic geometry and the 3D geometry of a fold to make high-quality alignments. Results and comparisons are reported for several difficult fold alignments. The second algorithm's ability to correctly identify fold families in the Skolnick40 and Proteus300 data sets is also established.

Original Text (This is the original text for your reference.)

A spectral approach to protein structure alignment.

A new intrinsic geometry based on a spectral analysis is used to motivate methods for aligning protein folds. The geometry is induced by the fact that a distance matrix can be scaled so that its eigenvalues are positive. We provide a mathematically rigorous development of the intrinsic geometry underlying our spectral approach and use it to motivate two alignment algorithms. The first uses eigenvalues alone and dynamic programming to quickly compute a fold alignment. Family identification results are reported for the Skolnick40 and Proteus300 data sets. The second algorithm extends our spectral method by iterating between our intrinsic geometry and the 3D geometry of a fold to make high-quality alignments. Results and comparisons are reported for several difficult fold alignments. The second algorithm's ability to correctly identify fold families in the Skolnick40 and Proteus300 data sets is also established.

+More

Cite this article
APA

APA

MLA

Chicago

Yosi, Shibberu Allen, Holder,.A spectral approach to protein structure alignment.. 8 (4),867-75.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel