Welcome to the IKCEST

Accident Analysis & Prevention | Vol.104, Issue.0 | | Pages

Accident Analysis & Prevention

Can vehicle longitudinal jerk be used to identify aggressive drivers? An examination using naturalistic driving data

James R. Sayer   Shan Bao   Carol Flannagan   Michael Manser   Fred Feng   Robert Wunderlich  
Abstract

This paper investigated the characteristics of vehicle longitudinal jerk (change rate of acceleration with respect to time) by using vehicle sensor data from an existing naturalistic driving study. The main objective was to examine whether vehicle jerk contains useful information that could be potentially used to identify aggressive drivers. Initial investigation showed that there are unique characteristics of vehicle jerk in drivers’ gas and brake pedal operations. Thus two jerk-based metrics were examined: (1) driver’s frequency of using large positive jerk when pressing the gas pedal, and (2) driver’s frequency of using large negative jerk when pressing the brake pedal. To validate the performance of the two metrics, drivers were firstly divided into an aggressive group and a normal group using three classification methods (1) traveling at excessive speed (speeding), (2) following too closely to a front vehicle (tailgating), and (3) their association with crashes or near-crashes in the dataset. The results show that those aggressive drivers defined using any of the three methods above were associated with significantly higher values of the two jerk-based metrics. Between the two metrics the frequency of using large negative jerk seems to have better performance in identifying aggressive drivers. A sensitivity analysis shows the findings were largely consistent with varying parameters in the analysis. The potential applications of this work include developing quantitative surrogate safety measures to identify aggressive drivers and aggressive driving, which could be potentially used to, for example, provide real-time or post-ride performance feedback to the drivers, or warn the surrounding drivers or vehicles using the connected vehicle technologies.

Original Text (This is the original text for your reference.)

Can vehicle longitudinal jerk be used to identify aggressive drivers? An examination using naturalistic driving data

This paper investigated the characteristics of vehicle longitudinal jerk (change rate of acceleration with respect to time) by using vehicle sensor data from an existing naturalistic driving study. The main objective was to examine whether vehicle jerk contains useful information that could be potentially used to identify aggressive drivers. Initial investigation showed that there are unique characteristics of vehicle jerk in drivers’ gas and brake pedal operations. Thus two jerk-based metrics were examined: (1) driver’s frequency of using large positive jerk when pressing the gas pedal, and (2) driver’s frequency of using large negative jerk when pressing the brake pedal. To validate the performance of the two metrics, drivers were firstly divided into an aggressive group and a normal group using three classification methods (1) traveling at excessive speed (speeding), (2) following too closely to a front vehicle (tailgating), and (3) their association with crashes or near-crashes in the dataset. The results show that those aggressive drivers defined using any of the three methods above were associated with significantly higher values of the two jerk-based metrics. Between the two metrics the frequency of using large negative jerk seems to have better performance in identifying aggressive drivers. A sensitivity analysis shows the findings were largely consistent with varying parameters in the analysis. The potential applications of this work include developing quantitative surrogate safety measures to identify aggressive drivers and aggressive driving, which could be potentially used to, for example, provide real-time or post-ride performance feedback to the drivers, or warn the surrounding drivers or vehicles using the connected vehicle technologies.

+More

Cite this article
APA

APA

MLA

Chicago

James R. Sayer, Shan Bao, Carol Flannagan, Michael Manser,Fred Feng, Robert Wunderlich,.Can vehicle longitudinal jerk be used to identify aggressive drivers? An examination using naturalistic driving data. 104 (0),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel