Welcome to the IKCEST

Applied Acoustics | Vol.125, Issue.0 | | Pages 80-90

Applied Acoustics

Modelling vibro-acoustic coupling in flexible micro-perforated plates by a patch-impedance approach

Muttalip Aşkın Temiz   Ines Lopez Arteaga   Avraham Hirschberg   Jonathan Tournadre  
Abstract

This study proposes a Finite Element (FE)-based efficient numerical model of the vibro-acoustic coupling in flexible micro-perforated plates (f-MPPs) where each perforation is described as an imposed impedance boundary condition (uniform impedance patch) on the plate. This approach opens the possibility of predicting the influence of perforation distribution on the acoustic performance of f-MPP. Micro perforated plates have been a topic of interest as a promising sound absorber in a wide range of applications, from room acoustics to combustion systems. One great advantage of these plates is that it gives the designer the freedom of choice on material in production. Depending on the material and the dimensions, the acoustical modes of the medium can couple with the structural modes of the plate. This coupling changes the number of absorption peaks, frequency and amplitude of the Helmholtz resonance of the system, therefore the coupling becomes an extra parameter in the design process. Current analytical models superpose the mechanical impedance of the plate with the acoustic impedance of the perforations to compute this coupling. This approach works fairly well for plates with uniform perforation distribution. This study proposes a numerical method which assumes perforations as discrete impedance patches on the flexible plate so that they can be considered separately. The method couples the solution of the Helmholtz equation in air with shell plate theory to model the vibro-acoustic effects and the impedance patches are represented as imposed transfer impedance boundary conditions. The assessment of the method is performed in terms of comparing the calculated absorption coefficient values from the simulations of several test cases, fundamental theories and measurement results from the literature. The simulation results agree both with these theoretical limits and measurement results. The use of the method is illustrated by considering an example of the influence of modification of the spatial distribution of perforations on the sound absorption of a membrane.

Original Text (This is the original text for your reference.)

Modelling vibro-acoustic coupling in flexible micro-perforated plates by a patch-impedance approach

This study proposes a Finite Element (FE)-based efficient numerical model of the vibro-acoustic coupling in flexible micro-perforated plates (f-MPPs) where each perforation is described as an imposed impedance boundary condition (uniform impedance patch) on the plate. This approach opens the possibility of predicting the influence of perforation distribution on the acoustic performance of f-MPP. Micro perforated plates have been a topic of interest as a promising sound absorber in a wide range of applications, from room acoustics to combustion systems. One great advantage of these plates is that it gives the designer the freedom of choice on material in production. Depending on the material and the dimensions, the acoustical modes of the medium can couple with the structural modes of the plate. This coupling changes the number of absorption peaks, frequency and amplitude of the Helmholtz resonance of the system, therefore the coupling becomes an extra parameter in the design process. Current analytical models superpose the mechanical impedance of the plate with the acoustic impedance of the perforations to compute this coupling. This approach works fairly well for plates with uniform perforation distribution. This study proposes a numerical method which assumes perforations as discrete impedance patches on the flexible plate so that they can be considered separately. The method couples the solution of the Helmholtz equation in air with shell plate theory to model the vibro-acoustic effects and the impedance patches are represented as imposed transfer impedance boundary conditions. The assessment of the method is performed in terms of comparing the calculated absorption coefficient values from the simulations of several test cases, fundamental theories and measurement results from the literature. The simulation results agree both with these theoretical limits and measurement results. The use of the method is illustrated by considering an example of the influence of modification of the spatial distribution of perforations on the sound absorption of a membrane.

+More

Cite this article
APA

APA

MLA

Chicago

Muttalip Aşkın Temiz, Ines Lopez Arteaga, Avraham Hirschberg, Jonathan Tournadre,.Modelling vibro-acoustic coupling in flexible micro-perforated plates by a patch-impedance approach. 125 (0),80-90.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel