Welcome to the IKCEST

AIChE Journal | Vol.63, Issue.8 | | Pages 3285-3276

AIChE Journal

Liquid-like wave structure on granular film from granular jet impact

Zhe-Hang Shi   Wei-Feng Li   Fu-Chen Wang   Hai-Feng Liu  
Abstract

Results in the literature show that a granular film appears from a dense granular jet impacting on a circular target under certain conditions (Cheng X, Varas G, Citron D, Jaeger HM, Nagel SR, Phys Rev Lett. 2007; 99(18):188001). In current study, granular jet impacts are experimentally studied using a high-speed camera, and interesting liquid-like wave structures on the granular film are observed with increasing granular jet velocities or decreasing solid fractions of granular jets. Effects of the particle diameter, the granular jet velocity, and the solid fraction of granular jet on the wave structures are investigated. The dynamic characteristics of granular wave such as the wave frequency and velocity are demonstrated and compared with the liquid jet impact. Results reveal that increasing pushing pressure enhances the gas-particle interaction inside the nozzle, which causes the granular jet instability and further gives rise to the granular wave at lower solid fractions and higher granular jet velocities. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3276–3285, 2017

Original Text (This is the original text for your reference.)

Liquid-like wave structure on granular film from granular jet impact

Results in the literature show that a granular film appears from a dense granular jet impacting on a circular target under certain conditions (Cheng X, Varas G, Citron D, Jaeger HM, Nagel SR, Phys Rev Lett. 2007; 99(18):188001). In current study, granular jet impacts are experimentally studied using a high-speed camera, and interesting liquid-like wave structures on the granular film are observed with increasing granular jet velocities or decreasing solid fractions of granular jets. Effects of the particle diameter, the granular jet velocity, and the solid fraction of granular jet on the wave structures are investigated. The dynamic characteristics of granular wave such as the wave frequency and velocity are demonstrated and compared with the liquid jet impact. Results reveal that increasing pushing pressure enhances the gas-particle interaction inside the nozzle, which causes the granular jet instability and further gives rise to the granular wave at lower solid fractions and higher granular jet velocities. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3276–3285, 2017

+More

Cite this article
APA

APA

MLA

Chicago

Zhe-Hang Shi, Wei-Feng Li, Fu-Chen Wang, Hai-Feng Liu,.Liquid-like wave structure on granular film from granular jet impact. 63 (8),3285-3276.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel