Welcome to the IKCEST

IEEE Transactions on Intelligent Transportation Systems | Vol.24, Issue.4 | | Pages 4114-4126

IEEE Transactions on Intelligent Transportation Systems

Long-Short Term Spatio-Temporal Aggregation for Trajectory Prediction

Cuiliu YangZhao Pei  
Abstract

Pedestrian trajectory prediction in crowd scenes plays a significant role in intelligent transportation systems. The main challenges are manifested in learning motion patterns and addressing future uncertainty. Typically, trajectory prediction is considered in two dimensions, including temporal dynamics modeling and social interactions capturing. For temporal dependencies, although existing models based on recurrent neural networks (RNNs) or convolutional neural networks (CNNs) achieve high performance on short-term prediction, they still suffer from limited scalability for long sequences. For social interactions, previous graph-based methods only consider fixed features but ignore dynamic interactions between pedestrians. Considering that the transformer network has a strong capability of capturing spatial and long-term temporal dynamics, we propose Long-Short Term Spatio-Temporal Aggregation (LSSTA) network for human trajectory prediction. First, a modern variant of graph neural networks, named spatial encoder, is presented to characterize spatial interactions between pedestrians. Second, LSSTA utilizes a transformer network to handle long-term temporal dependencies and aggregates the spatial and temporal features with a temporal convolution network (TCN). Thus, TCN is combined with the transformer to form a long-short term temporal dependency encoder. Additionally, multi-modal prediction is an efficient way to address future uncertainty. Existing auto-encoder modules are extended with static scene information and future ground truth for multi-modal trajectory prediction. Experimental results on complex scenes demonstrate the superior performance of our method in comparison to existing approaches.

Original Text (This is the original text for your reference.)

Long-Short Term Spatio-Temporal Aggregation for Trajectory Prediction

Pedestrian trajectory prediction in crowd scenes plays a significant role in intelligent transportation systems. The main challenges are manifested in learning motion patterns and addressing future uncertainty. Typically, trajectory prediction is considered in two dimensions, including temporal dynamics modeling and social interactions capturing. For temporal dependencies, although existing models based on recurrent neural networks (RNNs) or convolutional neural networks (CNNs) achieve high performance on short-term prediction, they still suffer from limited scalability for long sequences. For social interactions, previous graph-based methods only consider fixed features but ignore dynamic interactions between pedestrians. Considering that the transformer network has a strong capability of capturing spatial and long-term temporal dynamics, we propose Long-Short Term Spatio-Temporal Aggregation (LSSTA) network for human trajectory prediction. First, a modern variant of graph neural networks, named spatial encoder, is presented to characterize spatial interactions between pedestrians. Second, LSSTA utilizes a transformer network to handle long-term temporal dependencies and aggregates the spatial and temporal features with a temporal convolution network (TCN). Thus, TCN is combined with the transformer to form a long-short term temporal dependency encoder. Additionally, multi-modal prediction is an efficient way to address future uncertainty. Existing auto-encoder modules are extended with static scene information and future ground truth for multi-modal trajectory prediction. Experimental results on complex scenes demonstrate the superior performance of our method in comparison to existing approaches.

+More

Cite this article
APA

APA

MLA

Chicago

Cuiliu YangZhao Pei,.Long-Short Term Spatio-Temporal Aggregation for Trajectory Prediction. 24 (4),4114-4126.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel