IEEE Transactions on Geoscience and Remote Sensing | Vol.55, Issue.4 | | Pages 2326-2339
Trace Coherence: A New Operator for Polarimetric and Interferometric SAR images
Quadratic forms play an important role in the development of several polarimetric and interferometric synthetic aperture radar (Pol-InSAR) methodologies, which are very powerful tools for earth observation. This paper investigates integrals of Pol-InSAR operators based on quadratic forms, with special interest on the Pol-InSAR coherence. A new operator, namely Trace Coherence, is introduced, which provides an approximation for the center of mass of the coherence region (CoRe). The latter is the locus of points on the polar plot containing all the possible coherence values. Such center of mass can be calculated as the integral of Pol-InSAR coherences over the scattering mechanisms (SMs). The trace coherence provides synthetic information regarding the partial target as one single entity. Therefore, it provides a representation, which is not dependent on the selection of one specific polarization channel. It may find application in change detection (e.g., coherent change detection and differential DEM), classification (e.g., building structure parameters), and modeling (e.g., for the retrieval of forest height). In calculating the integral of the Pol-InSAR coherences, an approximate trace coherence expression is derived and shown to improve the calculation speed by several orders of magnitude. The trace coherence approximation is investigated using Monte Carlo simulations and validated ESA (DLR) L-band quad-polarimetric data acquired during the AGRISAR 2006 campaign. The result of the analysis using simulated and real data is that the average error in approximating the integral of the coherence region is 0.025 in magnitude and 3° in phase (in scenarios with sufficiently high coherence).
Original Text (This is the original text for your reference.)
Trace Coherence: A New Operator for Polarimetric and Interferometric SAR images
Quadratic forms play an important role in the development of several polarimetric and interferometric synthetic aperture radar (Pol-InSAR) methodologies, which are very powerful tools for earth observation. This paper investigates integrals of Pol-InSAR operators based on quadratic forms, with special interest on the Pol-InSAR coherence. A new operator, namely Trace Coherence, is introduced, which provides an approximation for the center of mass of the coherence region (CoRe). The latter is the locus of points on the polar plot containing all the possible coherence values. Such center of mass can be calculated as the integral of Pol-InSAR coherences over the scattering mechanisms (SMs). The trace coherence provides synthetic information regarding the partial target as one single entity. Therefore, it provides a representation, which is not dependent on the selection of one specific polarization channel. It may find application in change detection (e.g., coherent change detection and differential DEM), classification (e.g., building structure parameters), and modeling (e.g., for the retrieval of forest height). In calculating the integral of the Pol-InSAR coherences, an approximate trace coherence expression is derived and shown to improve the calculation speed by several orders of magnitude. The trace coherence approximation is investigated using Monte Carlo simulations and validated ESA (DLR) L-band quad-polarimetric data acquired during the AGRISAR 2006 campaign. The result of the analysis using simulated and real data is that the average error in approximating the integral of the coherence region is 0.025 in magnitude and 3° in phase (in scenarios with sufficiently high coherence).
+More
polar plot entity retrieval of forest polarization monte carlo dlr lband quadpolarimetric data forms integral of the polinsar coherences change detection eg coherent change detection and differential dem classification eg building structure parameters and modeling approximate trace coherence expression polarimetric and interferometric synthetic aperture radar polinsar methodologies real data operator synthetic information scattering mechanisms earth center of mass integrals of polinsar operators based on quadratic forms simulated
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: