Journal of proteome research | Vol.4, Issue.5 | | Pages 1863-6
Optimizing thiophosphorylation in the presence of competing phosphorylation with MALDI-TOF-MS detection.
Thiophosphorylation provides a metabolically stable, chemically reactive phosphorylation analogue for analyzing the phosphoproteome in vitro and in vivo. We developed a MALDI-TOF-MS based assay for optimizing thiophosphopeptide production by a kinase even in the presence of Mg(2+) and ATP. We found that Abl kinase thiophosphorylation rates can be "rescued" using Mn(2+) in the presence of Mg(2+). Under our ideal conditions, titration of Mn(2+) and ATPgammaS in the presence of Mg(2+) allowed relatively rapid, highly specific thiophosphorylation by Abl tyrosine kinase, both as purified enzyme and in complex cell extracts.
Original Text (This is the original text for your reference.)
Optimizing thiophosphorylation in the presence of competing phosphorylation with MALDI-TOF-MS detection.
Thiophosphorylation provides a metabolically stable, chemically reactive phosphorylation analogue for analyzing the phosphoproteome in vitro and in vivo. We developed a MALDI-TOF-MS based assay for optimizing thiophosphopeptide production by a kinase even in the presence of Mg(2+) and ATP. We found that Abl kinase thiophosphorylation rates can be "rescued" using Mn(2+) in the presence of Mg(2+). Under our ideal conditions, titration of Mn(2+) and ATPgammaS in the presence of Mg(2+) allowed relatively rapid, highly specific thiophosphorylation by Abl tyrosine kinase, both as purified enzyme and in complex cell extracts.
+More
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: