Welcome to the IKCEST

ArXiv | Vol.abs/2004.14280, Issue. | 1970-01-01 | Pages

ArXiv

Towards Character-Level Transformer NMT by Finetuning Subword Systems

Abstract

Applying the Transformer architecture on the character level usually requires very deep architectures that are difficult and slow to train. A few approaches have been proposed that partially overcome this problem by using explicit segmentation into tokens. We show that by initially training a subword model based on this segmentation and then finetuning it on characters, we can obtain a neural machine translation model that works at the character level without requiring segmentation. Without changing the vanilla 6-layer Transformer Base architecture, we train purely character-level models. Our character-level models better capture morphological phenomena and show much higher robustness towards source-side noise at the expense of somewhat worse overall translation quality. Our study is a significant step towards high-performance character-based models that are not extremely large.

Original Text (This is the original text for your reference.)

Towards Character-Level Transformer NMT by Finetuning Subword Systems

Applying the Transformer architecture on the character level usually requires very deep architectures that are difficult and slow to train. A few approaches have been proposed that partially overcome this problem by using explicit segmentation into tokens. We show that by initially training a subword model based on this segmentation and then finetuning it on characters, we can obtain a neural machine translation model that works at the character level without requiring segmentation. Without changing the vanilla 6-layer Transformer Base architecture, we train purely character-level models. Our character-level models better capture morphological phenomena and show much higher robustness towards source-side noise at the expense of somewhat worse overall translation quality. Our study is a significant step towards high-performance character-based models that are not extremely large.

+More

Cite this article
APA

APA

MLA

Chicago

.Towards Character-Level Transformer NMT by Finetuning Subword Systems. abs/2004.14280 ( ), .

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel