Welcome to the IKCEST

International Journal of Architectural Heritage | Vol.14, Issue.9 | 2019-05-04 | Pages 1373-1383

International Journal of Architectural Heritage

Assessing the Three-Dimensional Behaviour of Dry Stone Retaining Walls by Full-Scale Experiments

Jean-Claude Morel   Benjamin Terrade & Denis Garnier   Anne-Sophie Colas   Hong Hanh Le  
Abstract

Dry stone masonry is a widespread building technique, which has been used in Europe and all around the world in both monumental and vernacular architecture. Amongst them, dry stone structures retaining slopes have received growing attention over the past two decades, but only a few studies concentrate on the influence of localised loading upon the backfill. This paper describes an experimental campaign, comprising two tests on full-scale structures, which has been undertaken in France in order to investigate the behaviour of dry stone road retaining walls. The results of these tests are compared with those of a previous experimental campaign, and of a theoretical approach.

Original Text (This is the original text for your reference.)

Assessing the Three-Dimensional Behaviour of Dry Stone Retaining Walls by Full-Scale Experiments

Dry stone masonry is a widespread building technique, which has been used in Europe and all around the world in both monumental and vernacular architecture. Amongst them, dry stone structures retaining slopes have received growing attention over the past two decades, but only a few studies concentrate on the influence of localised loading upon the backfill. This paper describes an experimental campaign, comprising two tests on full-scale structures, which has been undertaken in France in order to investigate the behaviour of dry stone road retaining walls. The results of these tests are compared with those of a previous experimental campaign, and of a theoretical approach.

+More

Cite this article
APA

APA

MLA

Chicago

Jean-Claude Morel, Benjamin Terrade & Denis Garnier, Anne-Sophie Colas,Hong Hanh Le,.Assessing the Three-Dimensional Behaviour of Dry Stone Retaining Walls by Full-Scale Experiments. 14 (9),1373-1383.

References

Bui, T. T., A. Limam, V. Sarhosis, and M. Hjiaj. 2017. Discrete element modelling of the in-plane and out-of-plane behaviour of dry-joint masonry wall constructions. Engineering Structures 136:277–94. doi:10.1016/j.engstruct.2017.01.020. [Crossref], [Web of Science ®], [Google Scholar]

Le, H. H., D. Garnier, A.-S. Colas, B. Terrade, and J.-C. Morel. 2016. 3D homogenised strength criterion for masonry: Application to drystone retaining walls. Journal of the Mechanics and Physics of Solids 95:239–53. doi:10.1016/j.jmps.2016.05.021. [Crossref], [Web of Science ®], [Google Scholar]

Harkness, R. M., W. Powrie, X. Zhang, K. Brady, and M. O‘Reilly. 2000. Numerical modelling of full-scale tests on drystone masonry retaining wall. Géotechnique 500 (2):165–79. doi:10.1680/geot.2000.50.2.165. [Crossref], [Google Scholar]

McCombie, P., C. Mundell, A. Heath, and P. Walker. 2012. Drystone retaining walls: Ductile engineering structures with tensile strength. Engineering Structures 45:238–43. doi:10.1016/j.engstruct.2012.06.046. [Crossref], [Web of Science ®], [Google Scholar]

Mundell, C., P. McCombie, C. Bailey, A. Heath, and P. Walker. 2009. Limit-equilibrium assesement of drystone retaining structures. Geotechnical Engineering 1620 (4):203–12. [Google Scholar]

Quezada, J.-C., E. Vincens, R. Mouterde, and J.-C. Morel. 2016. 3D failure of a scale-down dry stone retaining wall: A DEM modeling. Engineering Structures 117:506–17. doi:10.1016/j.engstruct.2016.03.020. [Crossref], [Web of Science ®], [Google Scholar]

Walker, P. J., and J. Dickens. 1995. Stability of medieval dry stone walls in zimbabwe. Géotechnique 45:141–47. doi:10.1680/geot.1995.45.1.141. [Crossref], [Web of Science ®], [Google Scholar]

CAPEB. 2008. Guide des bonnes pratiques de construction de murs de soutènement en pierre sèche. Vaulx-en-Velin: ENTPE. [Google Scholar]

Lourenço, P. B., D. V. Oliveira, P. Roca, and A. Orduña. 2005. Dry joint stone masonry walls subjected to in-plane combined loading. Journal of Structural Engineering 1310 (11):1665–73. doi:10.1061/(ASCE)0733-9445(2005)131:11(1665). [Crossref], [Google Scholar]

Maghous, S., and D. Garnier. 1995. Feasibility of a numerical method for computing the ultimate loads of three dimensional structures. Mechanics Research Communications 220 (3):279–88. doi:10.1016/0093-6413(95)00024-L. [Crossref], [Google Scholar]

Garnier, D. 1995. Analyse par la théorie du calcul à la rupture des facteurs de réduction de la capacité portante de fondations superficielles. PhD thesis, ENPC. [Google Scholar]

McCombie, P. F., J.-C. Morel, and D. Garnier. 2015. Drystone retaining walls: Design, construction and assessment. London: CRC Press. [Crossref], [Google Scholar]

Powrie, W., R. Harkness, X. Zhang, and D. I. Bush. 2002. Deformation and failure modes of drystone retaining walls. Géotechnique 520 (6):435–46. doi:10.1680/geot.2002.52.6.435. [Crossref], [Google Scholar]

Claxton, M., R. A. Hart, P. F. McCombie, and P. J. Walker. 2005. Rigid block distinct-element modelling of dry-stone retaining walls in plane strain. Journal of Geotechnical and Geoenvironmental Engineering 1310 (3):381–89. doi:10.1061/(ASCE)1090-0241(2005)131:3(381). [Crossref], [Google Scholar]

Burgoyne, J. 1853. Revetments or retaining walls. Corps of Royal Engineering Papers 3:154–59. [Google Scholar]

Villemus, B., J. C. Morel, and C. Boutin. 2007. Experimental assessment of dry stone retaining wall stability on a rigid foundation. Engineering Structures 290 (9):2124–32. doi:10.1016/j.engstruct.2006.11.007. [Crossref], [Google Scholar]

Walker, P., P. McCombie, and M. Claxton. 2007. Plane strain numerical model for drystone retaining walls. Geotechnical Engineering 1600 (2):97–103. [Google Scholar]

Smoljanović, H., N. Živaljić, Ž. Nikolić, and A. Munjiza. 2018. Numerical analysis of 3D dry-stone masonry structures by combined finite-discrete element method. International Journal of Solids and Structures 136– 137:150–67. doi:10.1016/j.ijsolstr.2017.12.012. [Crossref], [Web of Science ®], [Google Scholar]

Colas, A. S., J. C. Morel, and D. Garnier. 2013. Assessing the two-dimensional behaviour of drystone retaining walls by full-scale experiments and yield design simulation. Géotechnique 63 (2):107–17. doi:10.1680/geot.10.P.115. [Crossref], [Web of Science ®], [Google Scholar]

Oetomo, J. J., E. Vincens, F. Dedecker, and J.-C. Morel. 2015. Modeling the 2D behavior of dry-stone retaining walls by a fully discrete element method. International Journal for Numerical and Analytical Methods in Geomechanics 400 (7):1099–120. [Crossref], [Google Scholar]

Colas, A. S., J. C. Morel, and D. Garnier. 2010. Full-scale fields to assess dry-stone retaining wall stability. Engineering Structures 32:1215–22. doi:10.1016/j.engstruct.2009.12.047. [Crossref], [Web of Science ®], [Google Scholar]

Mundell, C., P. McCombie, A. Heath, J. Harkness, and P. Walker. 2010. Behaviour of drystone retaining structures. Structures and Buildings 163 (1):3–12. [Crossref], [Web of Science ®], [Google Scholar]

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel