Welcome to the IKCEST

iScience | Vol., Issue. | 2020-10-01 | Pages

iScience

Non-full-length Water-Soluble CXCR4QTY and CCR5QTY Chemokine Receptors: Implication for Overlooked Truncated but Functional Membrane Receptors

Kubicek, Jan   Zhang, Shuguang   Chung, Haeyoon   Tao, Fei   Chatterjee, Pranam   Blackburn, Camron   Ni, Jun   Yang, Gaojie   Schubert, Thomas   Maertens, Barbara   Qing, Rui   Han, Qiuyi   Suter, Bernhard P.  
Abstract

It was posited that functionalities of GPCRs require full-length sequences that are negated by residue deletions. Here we report that significantly truncated nfCCR5QTY and nfCXCR4QTY still bind native ligands. Receptor-ligand interactions were discovered from yeast 2-hybrid screening and confirmed by mating selection. Two nfCCR5QTY (SZ218a, SZ190b) and two nfCXCR4QTY (SZ158a, SZ146a) were expressed in E. coli. Synthesized receptors exhibited α-helical structures and bound respective ligands with reduced affinities. SZ190b and SZ158a were reconverted into non-QTY forms and expressed in HEK293T cells. Reconverted receptors localized on cell membranes and functioned as negative regulators for ligand-induced signaling when co-expressed with full-length receptors. CCR5-SZ190b individually can perform signaling at a reduced level with higher ligand concentration. Our findings provide insight into essential structural components for CCR5 and CXCR4 functionality, while raising the possibility that non-full-length receptors may be resulted from alternative splicing and that pseudo-genes in genomes may be present and functional in living organisms.

Original Text (This is the original text for your reference.)

Non-full-length Water-Soluble CXCR4QTY and CCR5QTY Chemokine Receptors: Implication for Overlooked Truncated but Functional Membrane Receptors

It was posited that functionalities of GPCRs require full-length sequences that are negated by residue deletions. Here we report that significantly truncated nfCCR5QTY and nfCXCR4QTY still bind native ligands. Receptor-ligand interactions were discovered from yeast 2-hybrid screening and confirmed by mating selection. Two nfCCR5QTY (SZ218a, SZ190b) and two nfCXCR4QTY (SZ158a, SZ146a) were expressed in E. coli. Synthesized receptors exhibited α-helical structures and bound respective ligands with reduced affinities. SZ190b and SZ158a were reconverted into non-QTY forms and expressed in HEK293T cells. Reconverted receptors localized on cell membranes and functioned as negative regulators for ligand-induced signaling when co-expressed with full-length receptors. CCR5-SZ190b individually can perform signaling at a reduced level with higher ligand concentration. Our findings provide insight into essential structural components for CCR5 and CXCR4 functionality, while raising the possibility that non-full-length receptors may be resulted from alternative splicing and that pseudo-genes in genomes may be present and functional in living organisms.

+More

Cite this article
APA

APA

MLA

Chicago

Kubicek, Jan, Zhang, Shuguang, Chung, Haeyoon, Tao, Fei, Chatterjee, Pranam, Blackburn, Camron, Ni, Jun, Yang, Gaojie, Schubert, Thomas, Maertens, Barbara,Qing, Rui, Han, Qiuyi, Suter, Bernhard P.,.Non-full-length Water-Soluble CXCR4QTY and CCR5QTY Chemokine Receptors: Implication for Overlooked Truncated but Functional Membrane Receptors. (),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel