Welcome to the IKCEST

Physical Review E | Vol.102, Issue.3 | 2020-09-01 | Pages

Physical Review E

Role of bridge nodes in epidemic spreading: Different regimes and crossovers

Ma, Jing   Valdez, Lucas D.   Braunstein, Lidia A.  
Abstract

Power-law behaviors are common in many disciplines, especially in network science. Real-world networks, like disease spreading among people, are more likely to be interconnected communities, and show richer power-law behaviors than isolated networks. In this paper, we look at the system of two communities which are connected by bridge links between a fraction r of bridge nodes, and study the effect of bridge nodes to the final state of the Susceptible-Infected-Recovered model by mapping it to link percolation. By keeping a fixed average connectivity, but allowing different transmissibilities along internal and bridge links, we theoretically derive different power-law asymptotic behaviors of the total fraction of the recovered R in the final state as r goes to zero, for different combinations of internal and bridge link transmissibilities. We also find crossover points where R follows different power-law behaviors with r on both sides when the internal transmissibility is below but close to its critical value for different bridge link transmissibilities. All of these power-law behaviors can be explained through different mechanisms of how finite clusters in each community are connected into the giant component of the whole system, and enable us to pick effective epidemic strategies and to better predict their impacts.

Original Text (This is the original text for your reference.)

Role of bridge nodes in epidemic spreading: Different regimes and crossovers

Power-law behaviors are common in many disciplines, especially in network science. Real-world networks, like disease spreading among people, are more likely to be interconnected communities, and show richer power-law behaviors than isolated networks. In this paper, we look at the system of two communities which are connected by bridge links between a fraction r of bridge nodes, and study the effect of bridge nodes to the final state of the Susceptible-Infected-Recovered model by mapping it to link percolation. By keeping a fixed average connectivity, but allowing different transmissibilities along internal and bridge links, we theoretically derive different power-law asymptotic behaviors of the total fraction of the recovered R in the final state as r goes to zero, for different combinations of internal and bridge link transmissibilities. We also find crossover points where R follows different power-law behaviors with r on both sides when the internal transmissibility is below but close to its critical value for different bridge link transmissibilities. All of these power-law behaviors can be explained through different mechanisms of how finite clusters in each community are connected into the giant component of the whole system, and enable us to pick effective epidemic strategies and to better predict their impacts.

+More

Cite this article
APA

APA

MLA

Chicago

Ma, Jing, Valdez, Lucas D., Braunstein, Lidia A.,.Role of bridge nodes in epidemic spreading: Different regimes and crossovers. 102 (3),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel