Welcome to the IKCEST

Thin-Walled Structures | Vol.156, Issue. | 2020-11-01 | Pages 107009

Thin-Walled Structures

A stacked sublaminate-based damage-plasticity model for simulating progressive damage in composite laminates under impact loading

Navid Zobeiry   Reza Vaziri   Johannes Reiner  
Abstract

We present a simple, efficient and easy-to-use finite element (FE) model for the simulation of progressive damage in quasi-isotropic IM7/8552 carbon fibre reinforced composites under low velocity impact loading. The sub-laminate based continuum-discrete model in the commercial FE software LS-DYNA consists of built-in tools to facilitate modelling and analysis. The coupled plastic-damage material card MAT81 describes intralaminar damage in tension and compression which is calibrated using digital image correlation in over-height compact tension and compact compression tests to extract damage properties such as strain softening curves and size of the failure process zone. The cohesive interface formulation is virtually calibrated leading to realistic zones of delamination. The proposed model was applied to a wide range of impact loadings and compared to results obtained from experimental testing and high-fidelity FE models. Besides the good correlation between simulation and experiments, we demonstrate how to quantify different energy dissipation mechanisms during impact events.

Original Text (This is the original text for your reference.)

A stacked sublaminate-based damage-plasticity model for simulating progressive damage in composite laminates under impact loading

We present a simple, efficient and easy-to-use finite element (FE) model for the simulation of progressive damage in quasi-isotropic IM7/8552 carbon fibre reinforced composites under low velocity impact loading. The sub-laminate based continuum-discrete model in the commercial FE software LS-DYNA consists of built-in tools to facilitate modelling and analysis. The coupled plastic-damage material card MAT81 describes intralaminar damage in tension and compression which is calibrated using digital image correlation in over-height compact tension and compact compression tests to extract damage properties such as strain softening curves and size of the failure process zone. The cohesive interface formulation is virtually calibrated leading to realistic zones of delamination. The proposed model was applied to a wide range of impact loadings and compared to results obtained from experimental testing and high-fidelity FE models. Besides the good correlation between simulation and experiments, we demonstrate how to quantify different energy dissipation mechanisms during impact events.

+More

Cite this article
APA

APA

MLA

Chicago

Navid Zobeiry, Reza Vaziri,Johannes Reiner,.A stacked sublaminate-based damage-plasticity model for simulating progressive damage in composite laminates under impact loading. 156 (),107009.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel