Welcome to the IKCEST

COMPUTER VISION AND IMAGE UNDERSTANDING | Vol.110, Issue. | 2008-04-29 | Pages 21

COMPUTER VISION AND IMAGE UNDERSTANDING

Image segmentation evaluation: A survey of unsupervised methods

Zhang, H    Goldman, SA   Fritts, JE   
Abstract

Image segmentation is an important processing step in many image, video and computer vision applications. Extensive research has been done in creating many different approaches and algorithms for image segmentation, but it is still difficult to assess whether one algorithm produces more accurate segmentations than another, whether it be for a particular image or set of images, or more generally, for a whole class of images. To date, the most common method for evaluating the effectiveness of a segmentation method is subjective evaluation, in which a human visually compares the image segmentation results for separate segmentation algorithms, which is a tedious process and inherently limits the depth of evaluation to a relatively small number of segmentation comparisons over a predetermined set of images. Another common evaluation alternative is supervised evaluation, in which a segmented image is compared against a manually-segmented or pre-processed reference image. ;Evaluation methods that require user assistance, such as subjective evaluation and supervised evaluation, are infeasible in many vision applications, so unsupervised methods are necessary. Unsupervised evaluation enables the objective comparison of both different segmentation methods and different parameterizations of a single method, without requiring human visual comparisons or comparison with a manually-segmented or pre-processed reference image. Additionally, unsupervised methods generate results for individual images and images whose characteristics may not be known until evaluation time. Unsupervised methods are crucial to real-time segmentation evaluation, and can furthermore enable self-tuning of algorithm parameters based on evaluation results. ;In this paper, we examine the unsupervised objective evaluation methods that have been proposed in the literature. An extensive evaluation of these methods are presented. The advantages and shortcomings of the underlying design mechanisms in these methods are discussed and analyzed through analytical evaluation and empirical evaluation. Finally, possible future directions for research in unsupervised evaluation are proposed. (c) 2007 Elsevier Inc. All rights reserved.

Original Text (This is the original text for your reference.)

Image segmentation evaluation: A survey of unsupervised methods

Image segmentation is an important processing step in many image, video and computer vision applications. Extensive research has been done in creating many different approaches and algorithms for image segmentation, but it is still difficult to assess whether one algorithm produces more accurate segmentations than another, whether it be for a particular image or set of images, or more generally, for a whole class of images. To date, the most common method for evaluating the effectiveness of a segmentation method is subjective evaluation, in which a human visually compares the image segmentation results for separate segmentation algorithms, which is a tedious process and inherently limits the depth of evaluation to a relatively small number of segmentation comparisons over a predetermined set of images. Another common evaluation alternative is supervised evaluation, in which a segmented image is compared against a manually-segmented or pre-processed reference image. ;Evaluation methods that require user assistance, such as subjective evaluation and supervised evaluation, are infeasible in many vision applications, so unsupervised methods are necessary. Unsupervised evaluation enables the objective comparison of both different segmentation methods and different parameterizations of a single method, without requiring human visual comparisons or comparison with a manually-segmented or pre-processed reference image. Additionally, unsupervised methods generate results for individual images and images whose characteristics may not be known until evaluation time. Unsupervised methods are crucial to real-time segmentation evaluation, and can furthermore enable self-tuning of algorithm parameters based on evaluation results. ;In this paper, we examine the unsupervised objective evaluation methods that have been proposed in the literature. An extensive evaluation of these methods are presented. The advantages and shortcomings of the underlying design mechanisms in these methods are discussed and analyzed through analytical evaluation and empirical evaluation. Finally, possible future directions for research in unsupervised evaluation are proposed. (c) 2007 Elsevier Inc. All rights reserved.

+More

Cite this article
APA

APA

MLA

Chicago

Zhang, H ,Goldman, SA,Fritts, JE ,.Image segmentation evaluation: A survey of unsupervised methods. 110 (),21.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel