Welcome to the IKCEST

IEEE Transactions on Information Theory | Vol.63, Issue.2 | | Pages 1019-1042

IEEE Transactions on Information Theory

Random Coding Error Exponents for the Two-User Interference Channel

Wasim Huleihel  
Abstract

This paper is about deriving lower bounds on the error exponents for the two-user interference channel under the random coding regime for several ensembles. Specifically, we first analyze the standard random coding ensemble, where the codebooks are comprised of independently and identically distributed (i.i.d.) codewords. For this ensemble, we focus on optimum decoding, which is in contrast to other, suboptimal decoding rules that have been used in the literature (e.g., joint typicality decoding, treating interference as noise, and so on). The fact that the interfering signal is a codeword, rather than an i.i.d. noise process, complicates the application of conventional techniques of performance analysis of the optimum decoder. In addition, unfortunately, these conventional techniques result in loose bounds. Using analytical tools rooted in statistical physics, as well as advanced union bounds, we derive single-letter formulas for the random coding error exponents. We compare our results with the best known lower bound on the error exponent, and show that our exponents can be strictly better. Then, in the second part of this paper, we consider more complicated coding ensembles and find a lower bound on the error exponent associated with the celebrated Han-Kobayashi random coding ensemble, which is based on superposition coding.

Original Text (This is the original text for your reference.)

Random Coding Error Exponents for the Two-User Interference Channel

This paper is about deriving lower bounds on the error exponents for the two-user interference channel under the random coding regime for several ensembles. Specifically, we first analyze the standard random coding ensemble, where the codebooks are comprised of independently and identically distributed (i.i.d.) codewords. For this ensemble, we focus on optimum decoding, which is in contrast to other, suboptimal decoding rules that have been used in the literature (e.g., joint typicality decoding, treating interference as noise, and so on). The fact that the interfering signal is a codeword, rather than an i.i.d. noise process, complicates the application of conventional techniques of performance analysis of the optimum decoder. In addition, unfortunately, these conventional techniques result in loose bounds. Using analytical tools rooted in statistical physics, as well as advanced union bounds, we derive single-letter formulas for the random coding error exponents. We compare our results with the best known lower bound on the error exponent, and show that our exponents can be strictly better. Then, in the second part of this paper, we consider more complicated coding ensembles and find a lower bound on the error exponent associated with the celebrated Han-Kobayashi random coding ensemble, which is based on superposition coding.

+More

Cite this article
APA

APA

MLA

Chicago

Wasim Huleihel,.Random Coding Error Exponents for the Two-User Interference Channel. 63 (2),1019-1042.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel