Biochimica et biophysica acta | Vol.1761, Issue.5-6 | | Pages 626-31
Inner nuclear membrane and regulation of Smad-mediated signaling.
Smads mediate signal transduction by cytokines of the transforming growth factor-beta family. Recent data show that intrinsic and extrinsic proteins of the inner nuclear membrane affect the activities of Smads. MAN1, an integral protein of the inner nuclear membrane, binds to receptor-regulated Smads and antagonizes signaling by transforming growth factor-beta, activin and bone morphogenic protein. Lamins A and C, extrinsic intermediate filament proteins of the inner nuclear membrane that are mutated in several human diseases, appear to regulate phosphorylation of Smads. These data demonstrate that proteins within and associated with the inner nuclear membrane lipid bilayer regulate signal transduction pathways involved in numerous developmental, physiological and pathophysiological processes.
Original Text (This is the original text for your reference.)
Inner nuclear membrane and regulation of Smad-mediated signaling.
Smads mediate signal transduction by cytokines of the transforming growth factor-beta family. Recent data show that intrinsic and extrinsic proteins of the inner nuclear membrane affect the activities of Smads. MAN1, an integral protein of the inner nuclear membrane, binds to receptor-regulated Smads and antagonizes signaling by transforming growth factor-beta, activin and bone morphogenic protein. Lamins A and C, extrinsic intermediate filament proteins of the inner nuclear membrane that are mutated in several human diseases, appear to regulate phosphorylation of Smads. These data demonstrate that proteins within and associated with the inner nuclear membrane lipid bilayer regulate signal transduction pathways involved in numerous developmental, physiological and pathophysiological processes.
+More
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: