Welcome to the IKCEST
Scientists develop numerical capability of laser-driven X-ray imaging | NSF - National Science Foundation

Experiments validate numerical modeling method for variety of uses

/n


June 24, 2020

/n

A team of scientists led by University of Nevada Reno physicist Hiroshi Sawada has demonstrated that numerical modeling accurately reproduces X-ray images using laser-produced X-rays.

/n

The images were obtained using the university's chirped pulse, amplification-based, 50-terawatt Leopard laser. The modeling approach established in the new work could be used as a predictive tool to simulate radiographic images of complex 3D solid objects without carrying out radiation-based experiments.

/n

A high intensity laser can produce an intense X-ray beam. Such laser-produced X-rays have been applied for recording X-ray images of various objects including a compressed laser fusion fuel, but a numerical tool for the quantitative comparison of a radiographic image has not been available until now.

/n

"A challenge to a realistic simulation of laser-produced X-ray radiography is its spatial scale," Sawada said. "To overcome this limitation, we separated modeling into two steps: X-ray generation is calculated with a fine resolution spatial grid, while computation of X-ray images is performed with a coarse grid to reproduce an X-ray image at a real experimental scale. A 3D computer aided design-like model of a test object allows us to directly compare experimental and simulated images."

/n

The National Science Foundation-funded work is published in the journal Plasma Physics and Controlled Fusion.

/n

High-energy X-rays produced by intense short-pulse lasers interacting with a solid have been studied for a broad range of applications, such as basic plasma science, medical imaging, and industrial and national security applications. Laser-produced X-ray sources have the advantages of a small source size, short duration, high photon numbers and tunable X-ray spectrum compared to a well-developed X-ray tube, the scientists say.

/n

"These researchers advanced development of predictive capabilities for X-ray radiography in ways that will pay dividends in both fundamental and applied research down the road," said Vyacheslav (Slava) Lukin, a program director in NSF's Division of Physics.

Original Text (This is the original text for your reference.)

Experiments validate numerical modeling method for variety of uses

/n


June 24, 2020

/n

A team of scientists led by University of Nevada Reno physicist Hiroshi Sawada has demonstrated that numerical modeling accurately reproduces X-ray images using laser-produced X-rays.

/n

The images were obtained using the university's chirped pulse, amplification-based, 50-terawatt Leopard laser. The modeling approach established in the new work could be used as a predictive tool to simulate radiographic images of complex 3D solid objects without carrying out radiation-based experiments.

/n

A high intensity laser can produce an intense X-ray beam. Such laser-produced X-rays have been applied for recording X-ray images of various objects including a compressed laser fusion fuel, but a numerical tool for the quantitative comparison of a radiographic image has not been available until now.

/n

"A challenge to a realistic simulation of laser-produced X-ray radiography is its spatial scale," Sawada said. "To overcome this limitation, we separated modeling into two steps: X-ray generation is calculated with a fine resolution spatial grid, while computation of X-ray images is performed with a coarse grid to reproduce an X-ray image at a real experimental scale. A 3D computer aided design-like model of a test object allows us to directly compare experimental and simulated images."

/n

The National Science Foundation-funded work is published in the journal Plasma Physics and Controlled Fusion.

/n

High-energy X-rays produced by intense short-pulse lasers interacting with a solid have been studied for a broad range of applications, such as basic plasma science, medical imaging, and industrial and national security applications. Laser-produced X-ray sources have the advantages of a small source size, short duration, high photon numbers and tunable X-ray spectrum compared to a well-developed X-ray tube, the scientists say.

/n

"These researchers advanced development of predictive capabilities for X-ray radiography in ways that will pay dividends in both fundamental and applied research down the road," said Vyacheslav (Slava) Lukin, a program director in NSF's Division of Physics.

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel