Welcome to the IKCEST
System's ability to boost laser precision at room temperature increases its usability | NSF - National Science Foundation

Squeezing light could enhance quantum computing, gravitational wave detection

/n


July 14, 2020

/n

Physicists at the Massachusetts Institute of Technology have designed a quantum "light squeezer" that reduces quantum noise in an incoming laser beam by 15%. It is the first system of its kind to work at room temperature, making it amenable to a compact, portable setup that may be added to high-precision experiments to improve laser measurements where quantum noise is a limiting factor.

/n

"The importance of the result is that you can engineer these mechanical systems so that at room temperature they still can have quantum mechanical properties," says MIT's Nergis Mavalvala. "That changes the game completely in terms of being able to use these systems, not just in our own labs, housed in large cryogenic refrigerators, but out in the world."

/n

The heart of the new squeezer is a marble-sized optical cavity, housed in a vacuum chamber and containing two mirrors, one of which is smaller than the diameter of a human hair. The larger mirror stands stationary while the other is movable, suspended by a spring-like cantilever.

/n

The shape and makeup of this second "nanomechanical" mirror is the key to the system's ability to work at room temperature. When a laser beam enters the cavity, it bounces between the two mirrors. The force imparted by the light makes the nanomechanical mirror swing back and forth, allowing the researchers to engineer the light that exits the cavity to have special quantum properties.

/n

The laser light can exit the system in a squeezed state, which can be used to make more precise measurements in quantum computation and cryptology, and in the detection of gravitational waves.

/n

The National Science Foundation-funded research is published in the journal Nature Physics.

Original Text (This is the original text for your reference.)

Squeezing light could enhance quantum computing, gravitational wave detection

/n


July 14, 2020

/n

Physicists at the Massachusetts Institute of Technology have designed a quantum "light squeezer" that reduces quantum noise in an incoming laser beam by 15%. It is the first system of its kind to work at room temperature, making it amenable to a compact, portable setup that may be added to high-precision experiments to improve laser measurements where quantum noise is a limiting factor.

/n

"The importance of the result is that you can engineer these mechanical systems so that at room temperature they still can have quantum mechanical properties," says MIT's Nergis Mavalvala. "That changes the game completely in terms of being able to use these systems, not just in our own labs, housed in large cryogenic refrigerators, but out in the world."

/n

The heart of the new squeezer is a marble-sized optical cavity, housed in a vacuum chamber and containing two mirrors, one of which is smaller than the diameter of a human hair. The larger mirror stands stationary while the other is movable, suspended by a spring-like cantilever.

/n

The shape and makeup of this second "nanomechanical" mirror is the key to the system's ability to work at room temperature. When a laser beam enters the cavity, it bounces between the two mirrors. The force imparted by the light makes the nanomechanical mirror swing back and forth, allowing the researchers to engineer the light that exits the cavity to have special quantum properties.

/n

The laser light can exit the system in a squeezed state, which can be used to make more precise measurements in quantum computation and cryptology, and in the detection of gravitational waves.

/n

The National Science Foundation-funded research is published in the journal Nature Physics.

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel