Welcome to the IKCEST
Origin and cross-species transmission of bat coronaviruses in China
  1. 1.

    Forni, D., Cagliani, R., Clerici, M. & Sironi, M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 25, 35–48 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Tao, Y. et al. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J. Virol. 91, e01953–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Graham, R. L. & Baric, R. S. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J. Virol. 84, 3134–3146 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Vijgen, L. et al. Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43. J. Virol. 80, 7270–7274 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Zhang, X. et al. Quasispecies of bovine enteric and respiratory coronaviruses based on complete genome sequences and genetic changes after tissue culture adaptation. Virology 363, 1–10 (2007).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Parrish, C. R. et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72, 457–470 (2008).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Li, D. L. et al. Molecular evolution of porcine epidemic diarrhea virus and porcine deltacoronavirus strains in Central China. Res. Vet. Sci. 120, 63–69 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Cui, J., Li, F. & Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).

    CAS  Google Scholar 

  9. 9.

    Lau, S. K. P. & Chan, J. F. W. Coronaviruses: emerging and re-emerging pathogens in humans and animals. Virol. J. 12, 209 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976 (2003).

    CAS  PubMed  Google Scholar 

  11. 11.

    Heymann, D. L. The international response to the outbreak of SARS in 2003. Philos. Trans. R. Soc. Lond. Ser. B 359, 1127–1129 (2004).

    Google Scholar 

  12. 12.

    World Health Organization. Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003, Vol. 2019 (World Health Organization, 2004).

  13. 13.

    Ge, X.-Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).

    ADS  CAS  PubMed  Google Scholar 

  15. 15.

    Lau, S. K. P. et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA 102, 14040–14045 (2005).

    ADS  CAS  PubMed  Google Scholar 

  16. 16.

    Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zhou, P. et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556, 255–258 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Gong, L. et al. A new bat-HKU2-like coronavirus in swine, China, 2017. Emerg. Infect. Dis. 23, 1607–1609 (2017).

    CAS  PubMed Central  Google Scholar 

  19. 19.

    Pan, Y. et al. Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China. Vet. Microbiol. 211, 15–21 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203.e3 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lam, T. T.-Y. et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583, 286–289 (2020).

    CAS  PubMed  Google Scholar 

  24. 24.

    Corman, V. M. et al. Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J. Virol. 88, 11297–11303 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Anthony, S. J. et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. mBio 8, e00373–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lau, S. K. P. et al. Receptor usage of a novel bat lineage c betacoronavirus reveals evolution of Middle East respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding. J. Infect. Dis. https://doi.org/10.1093/infdis/jiy018 (2018).

  27. 27.

    Corman, V. M. et al. Evidence for an ancestral association of human coronavirus 229E with bats. J. Virol. 89, 11858–11870 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Huynh, J. et al. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J. Virol. 86, 12816–12825 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wong, A. C. P., Li, X., Lau, S. K. P. & Woo, P. C. Y. Global epidemiology of bat coronaviruses. Viruses 11, 174 (2019).

    CAS  Google Scholar 

  31. 31.

    Drexler, J. F., Corman, V. M. & Drosten, C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir. Res. 101, 45–56 (2014).

    CAS  PubMed  Google Scholar 

  32. 32.

    Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evol. 3, vex012–vex012 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Leopardi, S. et al. Interplay between co-divergence and cross-species transmission in the evolutionary history of bat coronaviruses. Infect. Genet. Evol. 58, 279–289 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Cui, J. et al. Evolutionary relationships between bat coronaviruses and their hosts. Emerg. Infect. Dis. 13, 1526–1532 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Smith, A. T. & Xie, Y. A Guide to the Mammals of China (Princeton University Press, Princeton, 2008).

    Google Scholar 

  36. 36.

    Lin, X.-D. et al. Extensive diversity of coronaviruses in bats from China. Virology 507, 1–10 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ge, X.-Y. et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virol. Sin. 31, 31–40 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Woo, P. C. Y. et al. Molecular diversity of coronaviruses in bats. Virology 351, 180–187 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Wu, Z. et al. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J. 10, 609–620 (2016).

    PubMed  Google Scholar 

  40. 40.

    Tang, X. C. et al. Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol. 80, 7481–7490 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Woo, P. C. Y. et al. Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J. Virol. 81, 1574–1585 (2007).

    CAS  PubMed  Google Scholar 

  42. 42.

    Ge, X. et al. Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J. Virol. 86, 4620–4630 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Xu, L. et al. Detection and characterization of diverse alpha- and betacoronaviruses from bats in China. Virol. Sin. 31, 69–77 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Luo, Y. et al. Longitudinal surveillance of betacoronaviruses in fruit bats in Yunnan Province, China During 2009–2016. Virol. Sin. 33, 87–95 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Legendre, P. & Legendre, L. F. Numerical Ecology (Elsevier, 2012).

  46. 46.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Minin, V. N. & Suchard, M. A. Counting labeled transitions in continuous-time Markov models of evolution. J. Math. Biol. 56, 391–412 (2008).

    MathSciNet  PubMed  MATH  Google Scholar 

  49. 49.

    O’Brien, J. D., Minin, V. N. & Suchard, M. A. Learning to count: robust estimates for labeled distances between molecular sequences. Mol. Biol. Evol. 26, 801–814 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Google Scholar 

  51. 51.

    Simmons, N. B. Mammal Species of the World: A Taxonomic and Geographic Reference (eds Wilson, D. E. & Reeder, D. M.) 312–529 (Johns Hopkins Univ. Press, 2005).

  52. 52.

    Teeling, E. C. et al. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307, 580–584 (2005).

    ADS  CAS  PubMed  Google Scholar 

  53. 53.

    Stoffberg, S., Jacobs, D. S., Mackie, I. J. & Matthee, C. A. Molecular phylogenetics and historical biogeography of Rhinolophus bats. Mol. Phylogenet. Evol. 54, 1–9 (2010).

    PubMed  Google Scholar 

  54. 54.

    Foley, N. M. et al. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol. Biol. Evol. 32, 313–333 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Eick, G. N., Jacobs, D. S. & Matthee, C. A. A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol. Biol. Evol. 22, 1869–1886 (2005).

    CAS  PubMed  Google Scholar 

  56. 56.

    Ravel, A., Marivaux, L., Qi, T., Wang, Y.-Q. & Beard, K. C. New chiropterans from the middle Eocene of Shanghuang (Jiangsu Province, Coastal China): new insight into the dawn horseshoe bats (Rhinolophidae) in Asia. Zool. Scr. 43, 1–23 (2014).

    Google Scholar 

  57. 57.

    Luo, J. et al. Bat conservation in China: should protection of subterranean habitats be a priority? Oryx 47, 526–531 (2013).

    Google Scholar 

  58. 58.

    Willoughby, A. R., Phelps, K. L., Consortium, P. & Olival, K. J. A comparative analysis of viral richness and viral sharing in cave-roosting bats. Diversity 9, 35 (2017).

    Google Scholar 

  59. 59.

    Tsagkogeorga, G. et al. Phylogenomic analyses elucidate the evolutionary relationships of bats. Curr. Biol. 23, 2262–2267 (2013).

    CAS  PubMed  Google Scholar 

  60. 60.

    Yang, Y. et al. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc. Natl Acad. Sci. USA 111, 12516–12521 (2014).

    ADS  CAS  PubMed  Google Scholar 

  61. 61.

    Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Li, F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J. Virol. 89, 1954–1964 (2015).

    PubMed  Google Scholar 

  64. 64.

    Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3, 237–261 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Mao, X. G., Zhu, G. J., Zhang, S. & Rossiter, S. J. Pleistocene climatic cycling drives intra-specific diversification in the intermediate horseshoe bat (Rhinolophus affinis) in Southern China. Mol. Ecol. 19, 2754–2769 (2010).

    CAS  PubMed  Google Scholar 

  66. 66.

    Mao, X. et al. Multiple cases of asymmetric introgression among horseshoe bats detected by phylogenetic conflicts across loci. Biol. J. Linn. Soc. 110, 346–361 (2013).

    Google Scholar 

  67. 67.

    You, Y. et al. Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat species, Myotis davidii. BMC Evol. Biol. 10, 208 (2010).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Chen, J. P. et al. Contrasting genetic structure in two co-distributed species of old world fruit bat. PLoS ONE 5, e13903 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Krasnov, B. R., Pilosof, S., Shenbrot, G. I. & Khokhlova, I. S. Spatial variation in the phylogenetic structure of flea assemblages across geographic ranges of small mammalian hosts in the Palearctic. Int. J. Parasitol. 43, 763–770 (2013).

    PubMed  Google Scholar 

  70. 70.

    Bi, Y. et al. Novel avian influenza A (H5N6) viruses isolated in migratory waterfowl before the first human case reported in China, 2014. Sci. Rep. 6, 29888 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Bui, C. M., Adam, D. C., Njoto, E., Scotch, M. & MacIntyre, C. R. Characterising routes of H5N1 and H7N9 spread in China using Bayesian phylogeographical analysis. Emerg. Microbes Infect. 7, 184 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Gouilh, M. A. et al. SARS-Coronavirus ancestor’s foot-prints in South-East Asian bat colonies and the refuge theory. Infect. Genet. Evol. 11, 1690–1702 (2011).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Hu, B., Ge, X., Wang, L.-F. & Shi, Z. Bat origin of human coronaviruses. Virol. J. 12, 1–10 (2015).

    ADS  Google Scholar 

  74. 74.

    Anthony, S. J. et al. Coronaviruses in bats from Mexico. J. Gen. Virol. 94, 1028–1038 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Corman, V. M. et al. Characterization of a novel betacoronavirus related to MERS-CoV in European hedgehogs. J. Virol. 88, 717–724 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Munster, V. J. et al. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci. Rep. 6, 21878 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Joyjinda, Y. et al. First complete genome sequence of human coronavirus HKU1 from a nonill bat Guano Miner in Thailand. Microbiol. Resour. Announc. 8, e01457–01418 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Carroll, D. et al. The Global Virome Project. Science 359, 872–874 (2018).

    ADS  CAS  PubMed  Google Scholar 

  79. 79.

    Fountain-Jones, N. M. et al. Towards an eco-phylogenetic framework for infectious disease ecology. Biol. Rev. 93, 950–970 (2018).

    PubMed  Google Scholar 

  80. 80.

    Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Streicker, D. G., Lemey, P., Velasco-Villa, A. & Rupprecht, C. E. Rates of viral evolution are linked to host geography in bat rabies. PLoS Pathog. 8, e1002720 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Watanabe, S. et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg. Infect. Dis. 16, 1217–1223 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Irwin, D. M., Kocher, T. D. & Wilson, A. C. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32, 128–144 (1991).

    ADS  CAS  PubMed  Google Scholar 

  84. 84.

    IUCN. The IUCN Red List of Threatened Species. Version 2015.2, http://www.iucnredlist.org. (2018).

  85. 85.

    Xie, Y., MacKinnon, J. & Li, D. J. B. Study on biogeographical divisions of China. Biodivers. Conserv. 13, 1391–1417 (2004).

    Google Scholar 

  86. 86.

    Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A. & Lemey, P. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 30, 239–243 (2013).

    CAS  PubMed  Google Scholar 

  87. 87.

    Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proc. of the Gateway Computing Environments Workshop (GCE), 1–8 (New Orleans, 2010).

  89. 89.

    Bielejec, F. et al. SpreaD3: interactive visualization of spatiotemporal history and trait evolutionary processes. Mol. Biol. Evol. 33, 2167–2169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Jeffreys, H. Theory of Probability (Clarendon, Oxford, 1961).

    Google Scholar 

  91. 91.

    Faria, N. R., Suchard, M. A., Rambaut, A., Streicker, D. G. & Lemey, P. Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints. Philos. Trans. R. Soc. Ser. B 368, 20120196 (2013).

    Google Scholar 

  92. 92.

    Kamath, P. L. et al. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. Nat. Commun. 7, 11448 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Bandelt, H. J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

    CAS  PubMed  Google Scholar 

  94. 94.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS  Google Scholar 

  95. 95.

    Ooms, J., Chamberlain, S., Webb, C. O., Ackerly, D. D. & Kembel, S. W. phylocomr: Interface to ‘Phylocom’. R package version 0.1.2 (2018).

  96. 96.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed  Google Scholar 

  97. 97.

    Jombart, T. & Dray, S. Adephylo: exploratory analyses for the phylogenetic comparative method. R package version 1. 1–11 (2008).

Original Text (This is the original text for your reference.)

  1. 1.

    Forni, D., Cagliani, R., Clerici, M. & Sironi, M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 25, 35–48 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Tao, Y. et al. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J. Virol. 91, e01953–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Graham, R. L. & Baric, R. S. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J. Virol. 84, 3134–3146 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Vijgen, L. et al. Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43. J. Virol. 80, 7270–7274 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Zhang, X. et al. Quasispecies of bovine enteric and respiratory coronaviruses based on complete genome sequences and genetic changes after tissue culture adaptation. Virology 363, 1–10 (2007).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Parrish, C. R. et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72, 457–470 (2008).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Li, D. L. et al. Molecular evolution of porcine epidemic diarrhea virus and porcine deltacoronavirus strains in Central China. Res. Vet. Sci. 120, 63–69 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Cui, J., Li, F. & Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).

    CAS  Google Scholar 

  9. 9.

    Lau, S. K. P. & Chan, J. F. W. Coronaviruses: emerging and re-emerging pathogens in humans and animals. Virol. J. 12, 209 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976 (2003).

    CAS  PubMed  Google Scholar 

  11. 11.

    Heymann, D. L. The international response to the outbreak of SARS in 2003. Philos. Trans. R. Soc. Lond. Ser. B 359, 1127–1129 (2004).

    Google Scholar 

  12. 12.

    World Health Organization. Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003, Vol. 2019 (World Health Organization, 2004).

  13. 13.

    Ge, X.-Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).

    ADS  CAS  PubMed  Google Scholar 

  15. 15.

    Lau, S. K. P. et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA 102, 14040–14045 (2005).

    ADS  CAS  PubMed  Google Scholar 

  16. 16.

    Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zhou, P. et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556, 255–258 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Gong, L. et al. A new bat-HKU2-like coronavirus in swine, China, 2017. Emerg. Infect. Dis. 23, 1607–1609 (2017).

    CAS  PubMed Central  Google Scholar 

  19. 19.

    Pan, Y. et al. Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China. Vet. Microbiol. 211, 15–21 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203.e3 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lam, T. T.-Y. et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583, 286–289 (2020).

    CAS  PubMed  Google Scholar 

  24. 24.

    Corman, V. M. et al. Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J. Virol. 88, 11297–11303 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Anthony, S. J. et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. mBio 8, e00373–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lau, S. K. P. et al. Receptor usage of a novel bat lineage c betacoronavirus reveals evolution of Middle East respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding. J. Infect. Dis. https://doi.org/10.1093/infdis/jiy018 (2018).

  27. 27.

    Corman, V. M. et al. Evidence for an ancestral association of human coronavirus 229E with bats. J. Virol. 89, 11858–11870 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Huynh, J. et al. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J. Virol. 86, 12816–12825 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wong, A. C. P., Li, X., Lau, S. K. P. & Woo, P. C. Y. Global epidemiology of bat coronaviruses. Viruses 11, 174 (2019).

    CAS  Google Scholar 

  31. 31.

    Drexler, J. F., Corman, V. M. & Drosten, C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir. Res. 101, 45–56 (2014).

    CAS  PubMed  Google Scholar 

  32. 32.

    Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evol. 3, vex012–vex012 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Leopardi, S. et al. Interplay between co-divergence and cross-species transmission in the evolutionary history of bat coronaviruses. Infect. Genet. Evol. 58, 279–289 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Cui, J. et al. Evolutionary relationships between bat coronaviruses and their hosts. Emerg. Infect. Dis. 13, 1526–1532 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Smith, A. T. & Xie, Y. A Guide to the Mammals of China (Princeton University Press, Princeton, 2008).

    Google Scholar 

  36. 36.

    Lin, X.-D. et al. Extensive diversity of coronaviruses in bats from China. Virology 507, 1–10 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ge, X.-Y. et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virol. Sin. 31, 31–40 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Woo, P. C. Y. et al. Molecular diversity of coronaviruses in bats. Virology 351, 180–187 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Wu, Z. et al. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J. 10, 609–620 (2016).

    PubMed  Google Scholar 

  40. 40.

    Tang, X. C. et al. Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol. 80, 7481–7490 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Woo, P. C. Y. et al. Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J. Virol. 81, 1574–1585 (2007).

    CAS  PubMed  Google Scholar 

  42. 42.

    Ge, X. et al. Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J. Virol. 86, 4620–4630 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Xu, L. et al. Detection and characterization of diverse alpha- and betacoronaviruses from bats in China. Virol. Sin. 31, 69–77 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Luo, Y. et al. Longitudinal surveillance of betacoronaviruses in fruit bats in Yunnan Province, China During 2009–2016. Virol. Sin. 33, 87–95 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Legendre, P. & Legendre, L. F. Numerical Ecology (Elsevier, 2012).

  46. 46.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Minin, V. N. & Suchard, M. A. Counting labeled transitions in continuous-time Markov models of evolution. J. Math. Biol. 56, 391–412 (2008).

    MathSciNet  PubMed  MATH  Google Scholar 

  49. 49.

    O’Brien, J. D., Minin, V. N. & Suchard, M. A. Learning to count: robust estimates for labeled distances between molecular sequences. Mol. Biol. Evol. 26, 801–814 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Google Scholar 

  51. 51.

    Simmons, N. B. Mammal Species of the World: A Taxonomic and Geographic Reference (eds Wilson, D. E. & Reeder, D. M.) 312–529 (Johns Hopkins Univ. Press, 2005).

  52. 52.

    Teeling, E. C. et al. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307, 580–584 (2005).

    ADS  CAS  PubMed  Google Scholar 

  53. 53.

    Stoffberg, S., Jacobs, D. S., Mackie, I. J. & Matthee, C. A. Molecular phylogenetics and historical biogeography of Rhinolophus bats. Mol. Phylogenet. Evol. 54, 1–9 (2010).

    PubMed  Google Scholar 

  54. 54.

    Foley, N. M. et al. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol. Biol. Evol. 32, 313–333 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Eick, G. N., Jacobs, D. S. & Matthee, C. A. A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol. Biol. Evol. 22, 1869–1886 (2005).

    CAS  PubMed  Google Scholar 

  56. 56.

    Ravel, A., Marivaux, L., Qi, T., Wang, Y.-Q. & Beard, K. C. New chiropterans from the middle Eocene of Shanghuang (Jiangsu Province, Coastal China): new insight into the dawn horseshoe bats (Rhinolophidae) in Asia. Zool. Scr. 43, 1–23 (2014).

    Google Scholar 

  57. 57.

    Luo, J. et al. Bat conservation in China: should protection of subterranean habitats be a priority? Oryx 47, 526–531 (2013).

    Google Scholar 

  58. 58.

    Willoughby, A. R., Phelps, K. L., Consortium, P. & Olival, K. J. A comparative analysis of viral richness and viral sharing in cave-roosting bats. Diversity 9, 35 (2017).

    Google Scholar 

  59. 59.

    Tsagkogeorga, G. et al. Phylogenomic analyses elucidate the evolutionary relationships of bats. Curr. Biol. 23, 2262–2267 (2013).

    CAS  PubMed  Google Scholar 

  60. 60.

    Yang, Y. et al. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc. Natl Acad. Sci. USA 111, 12516–12521 (2014).

    ADS  CAS  PubMed  Google Scholar 

  61. 61.

    Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Li, F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J. Virol. 89, 1954–1964 (2015).

    PubMed  Google Scholar 

  64. 64.

    Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3, 237–261 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Mao, X. G., Zhu, G. J., Zhang, S. & Rossiter, S. J. Pleistocene climatic cycling drives intra-specific diversification in the intermediate horseshoe bat (Rhinolophus affinis) in Southern China. Mol. Ecol. 19, 2754–2769 (2010).

    CAS  PubMed  Google Scholar 

  66. 66.

    Mao, X. et al. Multiple cases of asymmetric introgression among horseshoe bats detected by phylogenetic conflicts across loci. Biol. J. Linn. Soc. 110, 346–361 (2013).

    Google Scholar 

  67. 67.

    You, Y. et al. Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat species, Myotis davidii. BMC Evol. Biol. 10, 208 (2010).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Chen, J. P. et al. Contrasting genetic structure in two co-distributed species of old world fruit bat. PLoS ONE 5, e13903 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Krasnov, B. R., Pilosof, S., Shenbrot, G. I. & Khokhlova, I. S. Spatial variation in the phylogenetic structure of flea assemblages across geographic ranges of small mammalian hosts in the Palearctic. Int. J. Parasitol. 43, 763–770 (2013).

    PubMed  Google Scholar 

  70. 70.

    Bi, Y. et al. Novel avian influenza A (H5N6) viruses isolated in migratory waterfowl before the first human case reported in China, 2014. Sci. Rep. 6, 29888 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Bui, C. M., Adam, D. C., Njoto, E., Scotch, M. & MacIntyre, C. R. Characterising routes of H5N1 and H7N9 spread in China using Bayesian phylogeographical analysis. Emerg. Microbes Infect. 7, 184 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Gouilh, M. A. et al. SARS-Coronavirus ancestor’s foot-prints in South-East Asian bat colonies and the refuge theory. Infect. Genet. Evol. 11, 1690–1702 (2011).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Hu, B., Ge, X., Wang, L.-F. & Shi, Z. Bat origin of human coronaviruses. Virol. J. 12, 1–10 (2015).

    ADS  Google Scholar 

  74. 74.

    Anthony, S. J. et al. Coronaviruses in bats from Mexico. J. Gen. Virol. 94, 1028–1038 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Corman, V. M. et al. Characterization of a novel betacoronavirus related to MERS-CoV in European hedgehogs. J. Virol. 88, 717–724 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Munster, V. J. et al. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci. Rep. 6, 21878 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Joyjinda, Y. et al. First complete genome sequence of human coronavirus HKU1 from a nonill bat Guano Miner in Thailand. Microbiol. Resour. Announc. 8, e01457–01418 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Carroll, D. et al. The Global Virome Project. Science 359, 872–874 (2018).

    ADS  CAS  PubMed  Google Scholar 

  79. 79.

    Fountain-Jones, N. M. et al. Towards an eco-phylogenetic framework for infectious disease ecology. Biol. Rev. 93, 950–970 (2018).

    PubMed  Google Scholar 

  80. 80.

    Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Streicker, D. G., Lemey, P., Velasco-Villa, A. & Rupprecht, C. E. Rates of viral evolution are linked to host geography in bat rabies. PLoS Pathog. 8, e1002720 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Watanabe, S. et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg. Infect. Dis. 16, 1217–1223 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Irwin, D. M., Kocher, T. D. & Wilson, A. C. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32, 128–144 (1991).

    ADS  CAS  PubMed  Google Scholar 

  84. 84.

    IUCN. The IUCN Red List of Threatened Species. Version 2015.2, http://www.iucnredlist.org. (2018).

  85. 85.

    Xie, Y., MacKinnon, J. & Li, D. J. B. Study on biogeographical divisions of China. Biodivers. Conserv. 13, 1391–1417 (2004).

    Google Scholar 

  86. 86.

    Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A. & Lemey, P. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 30, 239–243 (2013).

    CAS  PubMed  Google Scholar 

  87. 87.

    Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proc. of the Gateway Computing Environments Workshop (GCE), 1–8 (New Orleans, 2010).

  89. 89.

    Bielejec, F. et al. SpreaD3: interactive visualization of spatiotemporal history and trait evolutionary processes. Mol. Biol. Evol. 33, 2167–2169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Jeffreys, H. Theory of Probability (Clarendon, Oxford, 1961).

    Google Scholar 

  91. 91.

    Faria, N. R., Suchard, M. A., Rambaut, A., Streicker, D. G. & Lemey, P. Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints. Philos. Trans. R. Soc. Ser. B 368, 20120196 (2013).

    Google Scholar 

  92. 92.

    Kamath, P. L. et al. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. Nat. Commun. 7, 11448 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Bandelt, H. J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

    CAS  PubMed  Google Scholar 

  94. 94.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS  Google Scholar 

  95. 95.

    Ooms, J., Chamberlain, S., Webb, C. O., Ackerly, D. D. & Kembel, S. W. phylocomr: Interface to ‘Phylocom’. R package version 0.1.2 (2018).

  96. 96.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed  Google Scholar 

  97. 97.

    Jombart, T. & Dray, S. Adephylo: exploratory analyses for the phylogenetic comparative method. R package version 1. 1–11 (2008).

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel