- 1.
Henderson, A. The Palms of the Amazon (Oxford Univ. Press, Oxford, 1995).
- 2.
Dai, A. & Trenberth, K. E. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. hydrometeorol. 3, 660–687 (2002).
- 3.
Smith, W. O. Jr & Demaster, D. J. Phytoplankton biomass and productivity in the Amazon river plume: correlation with seasonal river discharge. Cont. Shelf Res. 16, 291–319 (1996).
- 4.
Coles, V. J. et al. The pathways and properties of the Amazon river plume in the tropical North Atlantic Ocean. J. Geophys. Res.: Oceans 118, 6894–6913 (2013).
- 5.
Mouyen, M. et al. Assessing modern river sediment discharge to the ocean using satellite gravimetry. Nat. Commun. 9, 3384 (2018).
- 6.
Oliveira, J. C., Aguiar, W., Cirano, M., Genz, F. & de Amorim, F. N. A climatology of the annual cycle of river discharges into the Brazilian continental shelves: from seasonal to interannual variability. Environ. Earth Sci. 77, 192 (2018).
- 7.
Gouveia, N. A., Gherardi, D. F. M. & Aragão, L. E. O. C. The role of the Amazon river plume on the intensification of the hydrological cycle. Geophys. Res. Lett. 46, 12221–12229 (2019).
- 8.
Ffield, A. Amazon and Orinoco river plumes and NBC rings: bystanders or participants in hurricane events? J. Clim. 20, 316–333 (2007).
- 9.
Hu, C., Montgomery, E. T., Schmitt, R. W. & Muller-Karger, F. E. The dispersal of the Amazon and Orinoco river water in the tropical Atlantic and Caribbean Sea: observation from space and S-PALACE floats. Deep-Sea Res. Pt II 51, 1151–1171 (2004).
- 10.
Stukel, M. R., Coles, V. J., Brooks, M. T. & Hood, R. R. Top-down, bottom-up and physical controls on diatom-diazotroph assemblage growth in the Amazon river plume. Biogeosci. 11, 3259–3278 (2013).
- 11.
Körtzinger, A. A significant CO2 sink in the tropical Atlantic Ocean associated with the Amazon river plume. Geophys. Res. Lett. 30, 2287 (2003).
- 12.
Lukas, R. & Lindstrom, E. The mixed layer of the western equatorial Pacific. J. Geophys. Res. 96, 3343–3357 (1991).
- 13.
Ibánhez, J. S. P., Diverrès, D., Araujo, M. & Lefèvre, N. Seasonal and interannual variability of sea‐air CO2 fluxes in the tropical Atlantic affected by the Amazon river plume. Glob. Biogeochem. Cy 29, 1640–1655 (2015).
- 14.
Vizy, E. K. & Cook, K. H. Influence of the Amazon/Orinoco plume on the summertime Atlantic climate. J. Geophys. Res.: Atmos. 115, D21112 (2010).
- 15.
Grodsky, S. A. et al. Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett. 39, L20603 (2012).
- 16.
Grodsky, S. A., Reverdin, G., Carton, J. A. & Coles, V. J. Year-to-year salinity changes in the Amazon plume: contrasting 2011 and 2012 Aquarius/SACD and SMOS satellite data. Remote Sens. Environ. 140, 14–22 (2014).
- 17.
Rudzin, J. E., Shay, L. K. & Jaimes de la Cruz, B. The impact of the Amazon–Orinoco river plume on enthalpy flux and air-sea interaction within Caribbean Sea tropical cyclones. Mon. Weather Rev. 147, 931–950 (2019).
- 18.
Masson, S. & Delecluse, P. Influence of the Amazon river runoff on the tropical Atlantic. Phys. Chem. Earth, Part B: Hydrol., Oceans Atmos. 26, 137–142 (2001).
- 19.
Jahfer, S., Vinayachandran, P. N. & Nanjundiah, R. S. The role of Amazon river runoff on the multidecadal variability of Atlantic ITCZ. Environ. Res. Lett. 15, 054013 (2020).
- 20.
Durand, F. et al. Impact of continental freshwater runoff on coastal sea level. Surv. Geophys. 40, 1437–1466 (2019).
- 21.
Giffard, P., Llovel, W., Jouanno, J., Morvan, G. & Decharme, B. Contribution of the Amazon river discharge to regional sea level in the tropical Atlantic Ocean. Water 11, 2348 (2019).
- 22.
Piecuch, C. G. & Wadehra, R. Dynamic sea level variability due to seasonal river discharge: a preliminary global ocean model study. Geophys. Res. Lett. 47, e2020GL086984 (2020).
- 23.
Jahfer, S., Vinayachandran, P. N. & Nanjundiah, R. S. Long-term impact of Amazon river runoff on northern hemispheric climate. Sci. Rep. 7, 10989 (2017).
- 24.
Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. USA 112, 13172–13177 (2015).
- 25.
Almeida, C. T., Oliveira-Júnior, J. F., Delgado, R. C., Cubo, P. & Ramos, M. C. Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. Int. J. Climatol. 37, 2013–2026 (2017).
- 26.
Barichivich, J. et al. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 4, eaat8785 (2018).
- 27.
Lan, C. W., Lo, M. H., Chou, C. & Kumar, S. Terrestrial water flux responses to global warming in tropical rainforest areas. Earth’s Future 4, 210–224 (2016).
- 28.
Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).
- 29.
Boutin, J. et al. First assessment of SMOS data over open ocean: part II-sea surface salinity. IEEE Trans. Geosci. Remote Sens 50, 1662–1675 (2012).
- 30.
Lagerloef, G. et al. Aquarius satellite mission provides new, detailed view of sea surface salinity. Bull. Am. Meteorol. Soc. 93, S70–S71 (2012).
- 31.
Adler, R. F. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).
- 32.
Becker, A. et al. A description of the global land-surface precipitation data products of the global precipitation climatology centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst. Sci. Data 5, 71–99 (2013).
- 33.
Chen, M., Xie, P., Janowiak, J. E. & Arkin, P. A. Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).
- 34.
Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).
- 35.
Xie, P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteor. Soc. 78, 2539–2558 (1997).
- 36.
Köhl, A. Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic. Q. J. R. Meteorol. Soc. 141, 166–181 (2015).
- 37.
Forget, G. et al. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. 8, 3071–3104 (2015).
- 38.
Carton, J. A., Chepurin, G. A. & Chen, L. SODA3: a new ocean climate reanalysis. J. Clim. 31, 6967–6983 (2018).
- 39.
Zuo, H., Balmaseda, M. A., Mogensen, K. & Tietsche, S. OCEAN5: the ECMWF Ocean Reanalysis System and its Real-Time Analysis Component (European Centre for Medium-Range Weather Forecasts, 2018).
- 40.
Good, S. A., Martin, M. J. & Rayner, N. A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res.: Oceans 118, 6704–6716 (2013).
- 41.
Argo. Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE https://doi.org/10.17882/42182 (2000).
- 42.
Griffies, S. M. et al. Datasets and protocol for the CLIVAR WGOMD coordinated ocean-sea ice reference experiments (COREs). WCRP Rep. 21, 1–21 (2012).
- 43.
Hallberg, R. Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Model. 72, 92–103 (2013).
- 44.
Goes, M., Molinari, R., da Silveira, I. & Wainer, I. Retroflections of the north brazil current during February 2002. Deep-Sea Res. Pt I. 52, 647–667 (2005).
- 45.
DeMaria, M. & Kaplan, J. A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weath. Forcast 9, 209–220 (1994).
- 46.
DeMaria, M., Mainelli, M., Shay, L. K., Knaff, J. A. & Kaplan, J. Further improvement to the statistical hurricane intensity prediction scheme (SHIPS). Weath. Forecast 20, 531–543 (2005).
- 47.
Mainelli, M., DeMaria, M., Shay, L. K. & Goni, G. Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weath. Forecast 23, 3–16 (2008).
- 48.
Chou, C. et al. Increase in the range between wet and dry season precipitation. Nat. Geosci. 6, 263 (2013).
- 49.
Chiang, J. C., Kushnir, Y. & Giannini, A. Deconstructing Atlantic intertropical convergence zone variability: influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res.: Atmos. 107, ACL-3 (2002).
- 50.
García-García, D. & Ummenhofer, C. C. Multidecadal variability of the continental precipitation annual amplitude driven by AMO and ENSO. Geophys. Res. Lett. 42, 526–535 (2015).
- 51.
Jones, C. & Carvalho, L. M. The influence of the Atlantic multidecadal oscillation on the eastern Andes low-level jet and precipitation in South America. npj Clim. Atmos. Sci. 1, 40 (2018).
- 52.
Marengo, J. A. Long‐term trends and cycles in the hydrometeorology of the Amazon basin since the late 1920s. Hydrol. Process. 23, 3236–3244 (2009).
- 53.
Fernandes, K., Giannini, A., Verchot, L., Baethgen, W. & Pinedo-Vasquez, M. Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations. Geophys. Res. Lett. 42, 6793–6801 (2015).
- 54.
Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).
- 55.
Marengo, J. A., Tomasella, J., Soares, W. R., Alves, L. M. & Nobre, C. A. Extreme climatic events in the Amazon basin. Theor. Appl. Climatol. 107, 73–85 (2012).
- 56.
Latrubesse, E. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).
- 57.
Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).
- 58.
Lin, Y.-H., Lo, M.-H. & Chou, C. Potential negative effects of groundwater dynamics on dry season convection in the Amazon river basin. Clim. Dyn. 46, 1001–1013 (2016).
- 59.
Dai, A. & Trenberth, K. Global river flow and continental discharge dataset. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D6V69H1T (2016).
- 60.
Schneider, U. et al. GPCC full data reanalysis version 6.0 (at 0.5°, 1.0°, 2.5°): Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Offenbach/Main, Germany https://doi.org/10.5676/DWD_GPCC/FD_M_V6_100 (2011).
- 61.
Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).
- 62.
Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).
- 63.
Oleson, K. W. et al. Technical Description of version 4.0 of the Community Land Model (CLM) (No. NCAR/TN-478+STR). University Corporation for Atmospheric Research. https://doi.org/10.5065/D6FB50WZ (2010).
- 64.
Viovy, N. CRUNCEP version 7—atmospheric forcing data for the community land model. in Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/PZ8F-F017 (2018).
- 65.
Chou, C. & Lan, C. W. Changes in the annual range of precipitation under global warming. J. Clim. 25, 222–235 (2012).
- 66.
Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).
- 67.
Chou, C., Neelin, J. D., Chen, C. A. & Tu, J. Y. Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Clim. 22, 1982–2005 (2009).
- 68.
Danabasoglu, G. et al. North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Model. 97, 65–90 (2016).
- 69.
Karspeck, A. R. et al. Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Clim. Dyn. 49, 957–982 (2017).
- 70.
Griffies, S. M. et al. Coordinated ocean-ice reference experiments (COREs). Ocean Model. 26, 1–46 (2009).
- 71.
Enfield, D. B., Mestas-Nuñez, A. M. & Trimble, P. J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 28, 2077–2080 (2001).
- 72.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1080 (1997).
- 73.
Henley, B. J. et al. A tripole index for the interdecadal Pacific oscillation. Clim. Dyn. 45, 3077–3090 (2015).
- 74.
Chi, N.-H., Lien, R.-C., D’Asaro, E. A. & Ma, B. B. The surface mixed layer heat budget from mooring observations in the central Indian Ocean during Madden–Julian Oscillation events. J. Geophys. Res.: Oceans 119, 4638–4652 (2014).
- 75.
Von Storch, H. & Zwiers, F. W. Statistical Analysis in Climate Research (Cambridge University Press, 2001).
- 76.
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. & Bladé, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 12, 1990–2009 (1999).
- 77.
Met Office. Cartopy: a carographic python library with a Matplotlib interface. Exeter, Devon (2010–2015). https://scitools.org.ul/cartopy (2010).
Comments
Something to say?
Log in or Sign up for free