Welcome to the IKCEST
Amplified seasonal cycle in hydroclimate over the Amazon river basin and its plume region
  1. 1.

    Henderson, A. The Palms of the Amazon (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  2. 2.

    Dai, A. & Trenberth, K. E. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. hydrometeorol. 3, 660–687 (2002).

    ADS  Google Scholar 

  3. 3.

    Smith, W. O. Jr & Demaster, D. J. Phytoplankton biomass and productivity in the Amazon river plume: correlation with seasonal river discharge. Cont. Shelf Res. 16, 291–319 (1996).

    ADS  Google Scholar 

  4. 4.

    Coles, V. J. et al. The pathways and properties of the Amazon river plume in the tropical North Atlantic Ocean. J. Geophys. Res.: Oceans 118, 6894–6913 (2013).

    ADS  Google Scholar 

  5. 5.

    Mouyen, M. et al. Assessing modern river sediment discharge to the ocean using satellite gravimetry. Nat. Commun. 9, 3384 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Oliveira, J. C., Aguiar, W., Cirano, M., Genz, F. & de Amorim, F. N. A climatology of the annual cycle of river discharges into the Brazilian continental shelves: from seasonal to interannual variability. Environ. Earth Sci. 77, 192 (2018).

    Google Scholar 

  7. 7.

    Gouveia, N. A., Gherardi, D. F. M. & Aragão, L. E. O. C. The role of the Amazon river plume on the intensification of the hydrological cycle. Geophys. Res. Lett. 46, 12221–12229 (2019).

    ADS  Google Scholar 

  8. 8.

    Ffield, A. Amazon and Orinoco river plumes and NBC rings: bystanders or participants in hurricane events? J. Clim. 20, 316–333 (2007).

    ADS  Google Scholar 

  9. 9.

    Hu, C., Montgomery, E. T., Schmitt, R. W. & Muller-Karger, F. E. The dispersal of the Amazon and Orinoco river water in the tropical Atlantic and Caribbean Sea: observation from space and S-PALACE floats. Deep-Sea Res. Pt II 51, 1151–1171 (2004).

    ADS  CAS  Google Scholar 

  10. 10.

    Stukel, M. R., Coles, V. J., Brooks, M. T. & Hood, R. R. Top-down, bottom-up and physical controls on diatom-diazotroph assemblage growth in the Amazon river plume. Biogeosci. 11, 3259–3278 (2013).

    Google Scholar 

  11. 11.

    Körtzinger, A. A significant CO2 sink in the tropical Atlantic Ocean associated with the Amazon river plume. Geophys. Res. Lett. 30, 2287 (2003).

    ADS  Google Scholar 

  12. 12.

    Lukas, R. & Lindstrom, E. The mixed layer of the western equatorial Pacific. J. Geophys. Res. 96, 3343–3357 (1991).

    ADS  Google Scholar 

  13. 13.

    Ibánhez, J. S. P., Diverrès, D., Araujo, M. & Lefèvre, N. Seasonal and interannual variability of sea‐air CO2 fluxes in the tropical Atlantic affected by the Amazon river plume. Glob. Biogeochem. Cy 29, 1640–1655 (2015).

    ADS  Google Scholar 

  14. 14.

    Vizy, E. K. & Cook, K. H. Influence of the Amazon/Orinoco plume on the summertime Atlantic climate. J. Geophys. Res.: Atmos. 115, D21112 (2010).

    ADS  Google Scholar 

  15. 15.

    Grodsky, S. A. et al. Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett. 39, L20603 (2012).

    ADS  Google Scholar 

  16. 16.

    Grodsky, S. A., Reverdin, G., Carton, J. A. & Coles, V. J. Year-to-year salinity changes in the Amazon plume: contrasting 2011 and 2012 Aquarius/SACD and SMOS satellite data. Remote Sens. Environ. 140, 14–22 (2014).

    ADS  Google Scholar 

  17. 17.

    Rudzin, J. E., Shay, L. K. & Jaimes de la Cruz, B. The impact of the Amazon–Orinoco river plume on enthalpy flux and air-sea interaction within Caribbean Sea tropical cyclones. Mon. Weather Rev. 147, 931–950 (2019).

    ADS  Google Scholar 

  18. 18.

    Masson, S. & Delecluse, P. Influence of the Amazon river runoff on the tropical Atlantic. Phys. Chem. Earth, Part B: Hydrol., Oceans Atmos. 26, 137–142 (2001).

    ADS  Google Scholar 

  19. 19.

    Jahfer, S., Vinayachandran, P. N. & Nanjundiah, R. S. The role of Amazon river runoff on the multidecadal variability of Atlantic ITCZ. Environ. Res. Lett. 15, 054013 (2020).

    ADS  Google Scholar 

  20. 20.

    Durand, F. et al. Impact of continental freshwater runoff on coastal sea level. Surv. Geophys. 40, 1437–1466 (2019).

    ADS  Google Scholar 

  21. 21.

    Giffard, P., Llovel, W., Jouanno, J., Morvan, G. & Decharme, B. Contribution of the Amazon river discharge to regional sea level in the tropical Atlantic Ocean. Water 11, 2348 (2019).

    Google Scholar 

  22. 22.

    Piecuch, C. G. & Wadehra, R. Dynamic sea level variability due to seasonal river discharge: a preliminary global ocean model study. Geophys. Res. Lett. 47, e2020GL086984 (2020).

    ADS  Google Scholar 

  23. 23.

    Jahfer, S., Vinayachandran, P. N. & Nanjundiah, R. S. Long-term impact of Amazon river runoff on northern hemispheric climate. Sci. Rep. 7, 10989 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. USA 112, 13172–13177 (2015).

    ADS  CAS  PubMed  Google Scholar 

  25. 25.

    Almeida, C. T., Oliveira-Júnior, J. F., Delgado, R. C., Cubo, P. & Ramos, M. C. Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. Int. J. Climatol. 37, 2013–2026 (2017).

    Google Scholar 

  26. 26.

    Barichivich, J. et al. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 4, eaat8785 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lan, C. W., Lo, M. H., Chou, C. & Kumar, S. Terrestrial water flux responses to global warming in tropical rainforest areas. Earth’s Future 4, 210–224 (2016).

    ADS  Google Scholar 

  28. 28.

    Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).

    ADS  CAS  PubMed  Google Scholar 

  29. 29.

    Boutin, J. et al. First assessment of SMOS data over open ocean: part II-sea surface salinity. IEEE Trans. Geosci. Remote Sens 50, 1662–1675 (2012).

    ADS  Google Scholar 

  30. 30.

    Lagerloef, G. et al. Aquarius satellite mission provides new, detailed view of sea surface salinity. Bull. Am. Meteorol. Soc. 93, S70–S71 (2012).

    Google Scholar 

  31. 31.

    Adler, R. F. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).

    ADS  Google Scholar 

  32. 32.

    Becker, A. et al. A description of the global land-surface precipitation data products of the global precipitation climatology centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst. Sci. Data 5, 71–99 (2013).

    ADS  Google Scholar 

  33. 33.

    Chen, M., Xie, P., Janowiak, J. E. & Arkin, P. A. Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).

    ADS  Google Scholar 

  34. 34.

    Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).

    ADS  Google Scholar 

  35. 35.

    Xie, P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteor. Soc. 78, 2539–2558 (1997).

    ADS  Google Scholar 

  36. 36.

    Köhl, A. Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic. Q. J. R. Meteorol. Soc. 141, 166–181 (2015).

    ADS  Google Scholar 

  37. 37.

    Forget, G. et al. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. 8, 3071–3104 (2015).

    ADS  Google Scholar 

  38. 38.

    Carton, J. A., Chepurin, G. A. & Chen, L. SODA3: a new ocean climate reanalysis. J. Clim. 31, 6967–6983 (2018).

    ADS  Google Scholar 

  39. 39.

    Zuo, H., Balmaseda, M. A., Mogensen, K. & Tietsche, S. OCEAN5: the ECMWF Ocean Reanalysis System and its Real-Time Analysis Component (European Centre for Medium-Range Weather Forecasts, 2018).

  40. 40.

    Good, S. A., Martin, M. J. & Rayner, N. A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res.: Oceans 118, 6704–6716 (2013).

    ADS  Google Scholar 

  41. 41.

    Argo. Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE https://doi.org/10.17882/42182 (2000).

  42. 42.

    Griffies, S. M. et al. Datasets and protocol for the CLIVAR WGOMD coordinated ocean-sea ice reference experiments (COREs). WCRP Rep. 21, 1–21 (2012).

    Google Scholar 

  43. 43.

    Hallberg, R. Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Model. 72, 92–103 (2013).

    ADS  Google Scholar 

  44. 44.

    Goes, M., Molinari, R., da Silveira, I. & Wainer, I. Retroflections of the north brazil current during February 2002. Deep-Sea Res. Pt I. 52, 647–667 (2005).

    ADS  Google Scholar 

  45. 45.

    DeMaria, M. & Kaplan, J. A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weath. Forcast 9, 209–220 (1994).

    ADS  Google Scholar 

  46. 46.

    DeMaria, M., Mainelli, M., Shay, L. K., Knaff, J. A. & Kaplan, J. Further improvement to the statistical hurricane intensity prediction scheme (SHIPS). Weath. Forecast 20, 531–543 (2005).

    ADS  Google Scholar 

  47. 47.

    Mainelli, M., DeMaria, M., Shay, L. K. & Goni, G. Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weath. Forecast 23, 3–16 (2008).

    ADS  Google Scholar 

  48. 48.

    Chou, C. et al. Increase in the range between wet and dry season precipitation. Nat. Geosci. 6, 263 (2013).

    ADS  CAS  Google Scholar 

  49. 49.

    Chiang, J. C., Kushnir, Y. & Giannini, A. Deconstructing Atlantic intertropical convergence zone variability: influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res.: Atmos. 107, ACL-3 (2002).

    Google Scholar 

  50. 50.

    García-García, D. & Ummenhofer, C. C. Multidecadal variability of the continental precipitation annual amplitude driven by AMO and ENSO. Geophys. Res. Lett. 42, 526–535 (2015).

    ADS  Google Scholar 

  51. 51.

    Jones, C. & Carvalho, L. M. The influence of the Atlantic multidecadal oscillation on the eastern Andes low-level jet and precipitation in South America. npj Clim. Atmos. Sci. 1, 40 (2018).

    Google Scholar 

  52. 52.

    Marengo, J. A. Long‐term trends and cycles in the hydrometeorology of the Amazon basin since the late 1920s. Hydrol. Process. 23, 3236–3244 (2009).

    ADS  Google Scholar 

  53. 53.

    Fernandes, K., Giannini, A., Verchot, L., Baethgen, W. & Pinedo-Vasquez, M. Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations. Geophys. Res. Lett. 42, 6793–6801 (2015).

    ADS  Google Scholar 

  54. 54.

    Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).

    ADS  CAS  PubMed  Google Scholar 

  55. 55.

    Marengo, J. A., Tomasella, J., Soares, W. R., Alves, L. M. & Nobre, C. A. Extreme climatic events in the Amazon basin. Theor. Appl. Climatol. 107, 73–85 (2012).

    ADS  Google Scholar 

  56. 56.

    Latrubesse, E. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).

    ADS  CAS  PubMed  Google Scholar 

  57. 57.

    Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).

    ADS  Google Scholar 

  58. 58.

    Lin, Y.-H., Lo, M.-H. & Chou, C. Potential negative effects of groundwater dynamics on dry season convection in the Amazon river basin. Clim. Dyn. 46, 1001–1013 (2016).

    Google Scholar 

  59. 59.

    Dai, A. & Trenberth, K. Global river flow and continental discharge dataset. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D6V69H1T (2016).

  60. 60.

    Schneider, U. et al. GPCC full data reanalysis version 6.0 (at 0.5°, 1.0°, 2.5°): Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Offenbach/Main, Germany https://doi.org/10.5676/DWD_GPCC/FD_M_V6_100 (2011).

  61. 61.

    Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).

    ADS  Google Scholar 

  62. 62.

    Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    ADS  Google Scholar 

  63. 63.

    Oleson, K. W. et al. Technical Description of version 4.0 of the Community Land Model (CLM) (No. NCAR/TN-478+STR). University Corporation for Atmospheric Research. https://doi.org/10.5065/D6FB50WZ (2010).

  64. 64.

    Viovy, N. CRUNCEP version 7—atmospheric forcing data for the community land model. in Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/PZ8F-F017 (2018).

  65. 65.

    Chou, C. & Lan, C. W. Changes in the annual range of precipitation under global warming. J. Clim. 25, 222–235 (2012).

    ADS  Google Scholar 

  66. 66.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    ADS  Google Scholar 

  67. 67.

    Chou, C., Neelin, J. D., Chen, C. A. & Tu, J. Y. Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Clim. 22, 1982–2005 (2009).

    ADS  Google Scholar 

  68. 68.

    Danabasoglu, G. et al. North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Model. 97, 65–90 (2016).

    ADS  Google Scholar 

  69. 69.

    Karspeck, A. R. et al. Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Clim. Dyn. 49, 957–982 (2017).

    Google Scholar 

  70. 70.

    Griffies, S. M. et al. Coordinated ocean-ice reference experiments (COREs). Ocean Model. 26, 1–46 (2009).

    ADS  Google Scholar 

  71. 71.

    Enfield, D. B., Mestas-Nuñez, A. M. & Trimble, P. J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 28, 2077–2080 (2001).

    ADS  Google Scholar 

  72. 72.

    Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1080 (1997).

    ADS  Google Scholar 

  73. 73.

    Henley, B. J. et al. A tripole index for the interdecadal Pacific oscillation. Clim. Dyn. 45, 3077–3090 (2015).

    Google Scholar 

  74. 74.

    Chi, N.-H., Lien, R.-C., D’Asaro, E. A. & Ma, B. B. The surface mixed layer heat budget from mooring observations in the central Indian Ocean during Madden–Julian Oscillation events. J. Geophys. Res.: Oceans 119, 4638–4652 (2014).

    ADS  Google Scholar 

  75. 75.

    Von Storch, H. & Zwiers, F. W. Statistical Analysis in Climate Research (Cambridge University Press, 2001).

  76. 76.

    Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. & Bladé, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 12, 1990–2009 (1999).

    ADS  Google Scholar 

  77. 77.

    Met Office. Cartopy: a carographic python library with a Matplotlib interface. Exeter, Devon (2010–2015). https://scitools.org.ul/cartopy (2010).

Original Text (This is the original text for your reference.)

  1. 1.

    Henderson, A. The Palms of the Amazon (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  2. 2.

    Dai, A. & Trenberth, K. E. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. hydrometeorol. 3, 660–687 (2002).

    ADS  Google Scholar 

  3. 3.

    Smith, W. O. Jr & Demaster, D. J. Phytoplankton biomass and productivity in the Amazon river plume: correlation with seasonal river discharge. Cont. Shelf Res. 16, 291–319 (1996).

    ADS  Google Scholar 

  4. 4.

    Coles, V. J. et al. The pathways and properties of the Amazon river plume in the tropical North Atlantic Ocean. J. Geophys. Res.: Oceans 118, 6894–6913 (2013).

    ADS  Google Scholar 

  5. 5.

    Mouyen, M. et al. Assessing modern river sediment discharge to the ocean using satellite gravimetry. Nat. Commun. 9, 3384 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Oliveira, J. C., Aguiar, W., Cirano, M., Genz, F. & de Amorim, F. N. A climatology of the annual cycle of river discharges into the Brazilian continental shelves: from seasonal to interannual variability. Environ. Earth Sci. 77, 192 (2018).

    Google Scholar 

  7. 7.

    Gouveia, N. A., Gherardi, D. F. M. & Aragão, L. E. O. C. The role of the Amazon river plume on the intensification of the hydrological cycle. Geophys. Res. Lett. 46, 12221–12229 (2019).

    ADS  Google Scholar 

  8. 8.

    Ffield, A. Amazon and Orinoco river plumes and NBC rings: bystanders or participants in hurricane events? J. Clim. 20, 316–333 (2007).

    ADS  Google Scholar 

  9. 9.

    Hu, C., Montgomery, E. T., Schmitt, R. W. & Muller-Karger, F. E. The dispersal of the Amazon and Orinoco river water in the tropical Atlantic and Caribbean Sea: observation from space and S-PALACE floats. Deep-Sea Res. Pt II 51, 1151–1171 (2004).

    ADS  CAS  Google Scholar 

  10. 10.

    Stukel, M. R., Coles, V. J., Brooks, M. T. & Hood, R. R. Top-down, bottom-up and physical controls on diatom-diazotroph assemblage growth in the Amazon river plume. Biogeosci. 11, 3259–3278 (2013).

    Google Scholar 

  11. 11.

    Körtzinger, A. A significant CO2 sink in the tropical Atlantic Ocean associated with the Amazon river plume. Geophys. Res. Lett. 30, 2287 (2003).

    ADS  Google Scholar 

  12. 12.

    Lukas, R. & Lindstrom, E. The mixed layer of the western equatorial Pacific. J. Geophys. Res. 96, 3343–3357 (1991).

    ADS  Google Scholar 

  13. 13.

    Ibánhez, J. S. P., Diverrès, D., Araujo, M. & Lefèvre, N. Seasonal and interannual variability of sea‐air CO2 fluxes in the tropical Atlantic affected by the Amazon river plume. Glob. Biogeochem. Cy 29, 1640–1655 (2015).

    ADS  Google Scholar 

  14. 14.

    Vizy, E. K. & Cook, K. H. Influence of the Amazon/Orinoco plume on the summertime Atlantic climate. J. Geophys. Res.: Atmos. 115, D21112 (2010).

    ADS  Google Scholar 

  15. 15.

    Grodsky, S. A. et al. Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett. 39, L20603 (2012).

    ADS  Google Scholar 

  16. 16.

    Grodsky, S. A., Reverdin, G., Carton, J. A. & Coles, V. J. Year-to-year salinity changes in the Amazon plume: contrasting 2011 and 2012 Aquarius/SACD and SMOS satellite data. Remote Sens. Environ. 140, 14–22 (2014).

    ADS  Google Scholar 

  17. 17.

    Rudzin, J. E., Shay, L. K. & Jaimes de la Cruz, B. The impact of the Amazon–Orinoco river plume on enthalpy flux and air-sea interaction within Caribbean Sea tropical cyclones. Mon. Weather Rev. 147, 931–950 (2019).

    ADS  Google Scholar 

  18. 18.

    Masson, S. & Delecluse, P. Influence of the Amazon river runoff on the tropical Atlantic. Phys. Chem. Earth, Part B: Hydrol., Oceans Atmos. 26, 137–142 (2001).

    ADS  Google Scholar 

  19. 19.

    Jahfer, S., Vinayachandran, P. N. & Nanjundiah, R. S. The role of Amazon river runoff on the multidecadal variability of Atlantic ITCZ. Environ. Res. Lett. 15, 054013 (2020).

    ADS  Google Scholar 

  20. 20.

    Durand, F. et al. Impact of continental freshwater runoff on coastal sea level. Surv. Geophys. 40, 1437–1466 (2019).

    ADS  Google Scholar 

  21. 21.

    Giffard, P., Llovel, W., Jouanno, J., Morvan, G. & Decharme, B. Contribution of the Amazon river discharge to regional sea level in the tropical Atlantic Ocean. Water 11, 2348 (2019).

    Google Scholar 

  22. 22.

    Piecuch, C. G. & Wadehra, R. Dynamic sea level variability due to seasonal river discharge: a preliminary global ocean model study. Geophys. Res. Lett. 47, e2020GL086984 (2020).

    ADS  Google Scholar 

  23. 23.

    Jahfer, S., Vinayachandran, P. N. & Nanjundiah, R. S. Long-term impact of Amazon river runoff on northern hemispheric climate. Sci. Rep. 7, 10989 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. USA 112, 13172–13177 (2015).

    ADS  CAS  PubMed  Google Scholar 

  25. 25.

    Almeida, C. T., Oliveira-Júnior, J. F., Delgado, R. C., Cubo, P. & Ramos, M. C. Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. Int. J. Climatol. 37, 2013–2026 (2017).

    Google Scholar 

  26. 26.

    Barichivich, J. et al. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 4, eaat8785 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lan, C. W., Lo, M. H., Chou, C. & Kumar, S. Terrestrial water flux responses to global warming in tropical rainforest areas. Earth’s Future 4, 210–224 (2016).

    ADS  Google Scholar 

  28. 28.

    Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).

    ADS  CAS  PubMed  Google Scholar 

  29. 29.

    Boutin, J. et al. First assessment of SMOS data over open ocean: part II-sea surface salinity. IEEE Trans. Geosci. Remote Sens 50, 1662–1675 (2012).

    ADS  Google Scholar 

  30. 30.

    Lagerloef, G. et al. Aquarius satellite mission provides new, detailed view of sea surface salinity. Bull. Am. Meteorol. Soc. 93, S70–S71 (2012).

    Google Scholar 

  31. 31.

    Adler, R. F. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).

    ADS  Google Scholar 

  32. 32.

    Becker, A. et al. A description of the global land-surface precipitation data products of the global precipitation climatology centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst. Sci. Data 5, 71–99 (2013).

    ADS  Google Scholar 

  33. 33.

    Chen, M., Xie, P., Janowiak, J. E. & Arkin, P. A. Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).

    ADS  Google Scholar 

  34. 34.

    Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).

    ADS  Google Scholar 

  35. 35.

    Xie, P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteor. Soc. 78, 2539–2558 (1997).

    ADS  Google Scholar 

  36. 36.

    Köhl, A. Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic. Q. J. R. Meteorol. Soc. 141, 166–181 (2015).

    ADS  Google Scholar 

  37. 37.

    Forget, G. et al. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. 8, 3071–3104 (2015).

    ADS  Google Scholar 

  38. 38.

    Carton, J. A., Chepurin, G. A. & Chen, L. SODA3: a new ocean climate reanalysis. J. Clim. 31, 6967–6983 (2018).

    ADS  Google Scholar 

  39. 39.

    Zuo, H., Balmaseda, M. A., Mogensen, K. & Tietsche, S. OCEAN5: the ECMWF Ocean Reanalysis System and its Real-Time Analysis Component (European Centre for Medium-Range Weather Forecasts, 2018).

  40. 40.

    Good, S. A., Martin, M. J. & Rayner, N. A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res.: Oceans 118, 6704–6716 (2013).

    ADS  Google Scholar 

  41. 41.

    Argo. Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE https://doi.org/10.17882/42182 (2000).

  42. 42.

    Griffies, S. M. et al. Datasets and protocol for the CLIVAR WGOMD coordinated ocean-sea ice reference experiments (COREs). WCRP Rep. 21, 1–21 (2012).

    Google Scholar 

  43. 43.

    Hallberg, R. Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Model. 72, 92–103 (2013).

    ADS  Google Scholar 

  44. 44.

    Goes, M., Molinari, R., da Silveira, I. & Wainer, I. Retroflections of the north brazil current during February 2002. Deep-Sea Res. Pt I. 52, 647–667 (2005).

    ADS  Google Scholar 

  45. 45.

    DeMaria, M. & Kaplan, J. A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weath. Forcast 9, 209–220 (1994).

    ADS  Google Scholar 

  46. 46.

    DeMaria, M., Mainelli, M., Shay, L. K., Knaff, J. A. & Kaplan, J. Further improvement to the statistical hurricane intensity prediction scheme (SHIPS). Weath. Forecast 20, 531–543 (2005).

    ADS  Google Scholar 

  47. 47.

    Mainelli, M., DeMaria, M., Shay, L. K. & Goni, G. Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weath. Forecast 23, 3–16 (2008).

    ADS  Google Scholar 

  48. 48.

    Chou, C. et al. Increase in the range between wet and dry season precipitation. Nat. Geosci. 6, 263 (2013).

    ADS  CAS  Google Scholar 

  49. 49.

    Chiang, J. C., Kushnir, Y. & Giannini, A. Deconstructing Atlantic intertropical convergence zone variability: influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res.: Atmos. 107, ACL-3 (2002).

    Google Scholar 

  50. 50.

    García-García, D. & Ummenhofer, C. C. Multidecadal variability of the continental precipitation annual amplitude driven by AMO and ENSO. Geophys. Res. Lett. 42, 526–535 (2015).

    ADS  Google Scholar 

  51. 51.

    Jones, C. & Carvalho, L. M. The influence of the Atlantic multidecadal oscillation on the eastern Andes low-level jet and precipitation in South America. npj Clim. Atmos. Sci. 1, 40 (2018).

    Google Scholar 

  52. 52.

    Marengo, J. A. Long‐term trends and cycles in the hydrometeorology of the Amazon basin since the late 1920s. Hydrol. Process. 23, 3236–3244 (2009).

    ADS  Google Scholar 

  53. 53.

    Fernandes, K., Giannini, A., Verchot, L., Baethgen, W. & Pinedo-Vasquez, M. Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations. Geophys. Res. Lett. 42, 6793–6801 (2015).

    ADS  Google Scholar 

  54. 54.

    Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).

    ADS  CAS  PubMed  Google Scholar 

  55. 55.

    Marengo, J. A., Tomasella, J., Soares, W. R., Alves, L. M. & Nobre, C. A. Extreme climatic events in the Amazon basin. Theor. Appl. Climatol. 107, 73–85 (2012).

    ADS  Google Scholar 

  56. 56.

    Latrubesse, E. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).

    ADS  CAS  PubMed  Google Scholar 

  57. 57.

    Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).

    ADS  Google Scholar 

  58. 58.

    Lin, Y.-H., Lo, M.-H. & Chou, C. Potential negative effects of groundwater dynamics on dry season convection in the Amazon river basin. Clim. Dyn. 46, 1001–1013 (2016).

    Google Scholar 

  59. 59.

    Dai, A. & Trenberth, K. Global river flow and continental discharge dataset. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D6V69H1T (2016).

  60. 60.

    Schneider, U. et al. GPCC full data reanalysis version 6.0 (at 0.5°, 1.0°, 2.5°): Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Offenbach/Main, Germany https://doi.org/10.5676/DWD_GPCC/FD_M_V6_100 (2011).

  61. 61.

    Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).

    ADS  Google Scholar 

  62. 62.

    Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    ADS  Google Scholar 

  63. 63.

    Oleson, K. W. et al. Technical Description of version 4.0 of the Community Land Model (CLM) (No. NCAR/TN-478+STR). University Corporation for Atmospheric Research. https://doi.org/10.5065/D6FB50WZ (2010).

  64. 64.

    Viovy, N. CRUNCEP version 7—atmospheric forcing data for the community land model. in Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/PZ8F-F017 (2018).

  65. 65.

    Chou, C. & Lan, C. W. Changes in the annual range of precipitation under global warming. J. Clim. 25, 222–235 (2012).

    ADS  Google Scholar 

  66. 66.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    ADS  Google Scholar 

  67. 67.

    Chou, C., Neelin, J. D., Chen, C. A. & Tu, J. Y. Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Clim. 22, 1982–2005 (2009).

    ADS  Google Scholar 

  68. 68.

    Danabasoglu, G. et al. North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Model. 97, 65–90 (2016).

    ADS  Google Scholar 

  69. 69.

    Karspeck, A. R. et al. Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Clim. Dyn. 49, 957–982 (2017).

    Google Scholar 

  70. 70.

    Griffies, S. M. et al. Coordinated ocean-ice reference experiments (COREs). Ocean Model. 26, 1–46 (2009).

    ADS  Google Scholar 

  71. 71.

    Enfield, D. B., Mestas-Nuñez, A. M. & Trimble, P. J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 28, 2077–2080 (2001).

    ADS  Google Scholar 

  72. 72.

    Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1080 (1997).

    ADS  Google Scholar 

  73. 73.

    Henley, B. J. et al. A tripole index for the interdecadal Pacific oscillation. Clim. Dyn. 45, 3077–3090 (2015).

    Google Scholar 

  74. 74.

    Chi, N.-H., Lien, R.-C., D’Asaro, E. A. & Ma, B. B. The surface mixed layer heat budget from mooring observations in the central Indian Ocean during Madden–Julian Oscillation events. J. Geophys. Res.: Oceans 119, 4638–4652 (2014).

    ADS  Google Scholar 

  75. 75.

    Von Storch, H. & Zwiers, F. W. Statistical Analysis in Climate Research (Cambridge University Press, 2001).

  76. 76.

    Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. & Bladé, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 12, 1990–2009 (1999).

    ADS  Google Scholar 

  77. 77.

    Met Office. Cartopy: a carographic python library with a Matplotlib interface. Exeter, Devon (2010–2015). https://scitools.org.ul/cartopy (2010).

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel