- 1.
Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143 (2014).
- 2.
Asseng, S. et al. Hot spots of wheat yield decline with rising temperatures. Glob. Change Biol. 23, 2464–2472 (2017).
- 3.
Tack, J., Barkley, A. & Nalley, L. L. Effect of warming temperatures on US wheat yields. Proc. Natl Acad. Sci. USA 112, 6931–6936 (2015).
- 4.
Niang, I. et al. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Ch. 22 Africa. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1199–1265 (2014).
- 5.
Maúre, G. et al. The southern African climate under 1.5 °C and 2 °C of global warming as simulated by CORDEX regional climate models. Environ. Res. Lett. 13, 065002 (2018).
- 6.
Dosio, A. et al. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 53, 5833–5858 (2019).
- 7.
Ziervogel, G. et al. Climate change impacts and adaptation in South Africa: climate change impacts in South Africa. Wiley Interdiscip. Rev. Clim. Change 5, 605–620 (2014).
- 8.
Knox, J., Hess, T., Daccache, A. & Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 7, 034032 (2012).
- 9.
Fischer, T., Byerlee, D. & Edmeades, G. Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph No. 158. Australian Centre for International Agricultural Research: Canberra, 65–126 (2014).
- 10.
Schlenker, W. & Lobell, D. B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 5, 014010 (2010).
- 11.
Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).
- 12.
Roberts, M. J., Braun, N. O., Sinclair, T. R., Lobell, D. B. & Schlenker, W. Comparing and combining process-based crop models and statistical models with some implications for climate change. Environ. Res. Lett. 12, 095010 (2017).
- 13.
Nalley, L., Dixon, B., Chaminuka, P., Naledzani, Z. & Coale, M. J. The role of public wheat breeding in reducing food insecurity in South Africa. PLoS ONE 13, e0209598 (2018).
- 14.
Tadesse, W., Bishaw, Z. & Assefa, S. Wheat production and breeding in Sub-Saharan Africa: challenges and opportunities in the face of climate change. Int. J. Clim. Change Strateg. Manag. 11, 696–715 (2019).
- 15.
Dube, E. et al. Genetic progress of spring wheat grain yield in various production regions of South Africa. South Afr. J. Plant Soil 36, 33–39 (2019).
- 16.
McGuire, S. & Sperling, L. Seed systems smallholder farmers use. Food Security 8, 179–195 (2016).
- 17.
Atlin, G. N., Cairns, J. E. & Das, B. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob. Food Security 12, 31–37 (2017).
- 18.
Leichenko, R. M. & O’Brien, K. L. The dynamics of rural vulnerability to global change: the case of southern Africa. Mitig. Adapt. Strateg. Glob. Change 7, 1–18 (2002).
- 19.
Challinor, A. J., Koehler, A.-K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).
- 20.
Burke, M. B., Lobell, D. B. & Guarino, L. Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Glob. Environ. Change 19, 317–325 (2009).
- 21.
SADC. Over 41.4 Million People In Southern Africa are Food Insecure. https://www.sadc.int/news-events/news/over-414-million-people-southern-africa-are-food-insecure/ (2016).
- 22.
Otto, F. E. L. et al. Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environ. Res. Lett. 13, 124010 (2018).
- 23.
Cullis, J. et al. An Uncertainty Approach to Modelling Climate Change Risk in South Africa. Vol. 2015 (UNU-WIDER, 2015).
- 24.
Conway, D. et al. Climate and southern Africa’s water–energy–food nexus. Nat. Clim. Change 5, 837 (2015).
- 25.
Dube, Toi J. Tsilo, Nondumiso Z. Sosibo & Morris Fanadzo. Irrigation wheat production constraints and opportunities in South Africa. S. Afr. J. Sci. 116, 1–6 (2020).
- 26.
GAIN. Global and Feed Annual Report: South Africa. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Grain%20and%20Feed%20Annual_Pretoria_South%20Africa%20-%20Republic%20of_3-27-2018.pdf (2018).
- 27.
Chisanga, B. et al. Modelling Wheat and Sugar Markets in Eastern and Southern Africa Regional Network of Agricultural Policy Research Institutes (ReNAPRI). (Publications Office, 2016).
- 28.
Mason, N. M., Jayne, T. S. & Shiferaw, B. Africa’s rising demand for wheat: trends, drivers, and policy implications. Dev. Policy Rev. 33, 581–613 (2015).
- 29.
GAIN. Global and Feed Annual Report: Zimbabwe. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/GRAIN%20AND%20FEED%20ANNUAL%20REPORT%20_Pretoria_Zimbabwe_7-26-2017.pdf (2017).
- 30.
Asseng, S., Foster, I. & Turner, N. C. The impact of temperature variability on wheat yields: Impact of temperature variability on wheat yields. Glob. Change Biol. 17, 997–1012 (2011).
- 31.
Gibson, L. R. & Paulsen, G. M. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci. 39, 1841 (1999).
- 32.
Ferris, R., Ellis, R., Wheeler, T. & Hadley, P. Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann. Bot. 82, 631–639 (1998).
- 33.
Bennie, A. T. P. & Hensley, M. Maximizing precipitation utilization in dryland agriculture in South Africa—a review. J. Hydrol. 241, 124–139 (2001).
- 34.
Baudoin, M.-A., Vogel, C., Nortje, K. & Naik, M. Living with drought in South Africa: lessons learnt from the recent El Niño drought period. Int. J. Disaster Risk Reduct. 23, 128–137 (2017).
- 35.
STATSA. General Household Survey-Statistics South Africa. http://www.statssa.gov.za/?p=9922 (2016).
- 36.
Challinor, A., Wheeler, T., Garforth, C., Craufurd, P. & Kassam, A. Assessing the vulnerability of food crop systems in Africa to climate change. Climatic Change 83, 381–399 (2007).
- 37.
Khan, Z. R. et al. Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020. Philos. Trans. R. Soc. B Biol. Sci. 369, 20120284–20120284 (2014).
- 38.
Fisher, M. et al. Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: determinants of adoption in eastern and southern Africa. Climatic Change 133, 283–299 (2015).
- 39.
Kay, G. & Washington, R. Future southern African summer rainfall variability related to a southwest Indian Ocean dipole in HadCM3. Geophys. Res. Lett. 35, n/a–n/a (2008).
- 40.
Kruger, A. C. & Sekele, S. S. Trends in extreme temperature indices in South Africa: 1962-2009. Int. J. Climatol. 33, 661–676 (2013).
- 41.
Moise, A. F. & Hudson, D. A. Probabilistic predictions of climate change for Australia and southern Africa using the reliability ensemble average of IPCC CMIP3 model simulations. J. Geophys. Res. 113, D15 (2008).
- 42.
Spano, D., Duce, P., Snyder, R. L. & Cesaraccio, C. An improved model for determining degree-day values from daily temperature data. Int. J. Biometeorol. 45, 161–169 (2001).
- 43.
Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).
- 44.
USDA-FAS. Commodity Intelligence Report: South Africa. https://ipad.fas.usda.gov/highlights/2017/01/SouthAfrica/index.htm (2017).
- 45.
Tack, J., Lingenfelser, J. & Jagadish, S. V. K. Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs. Proc. Natl Acad. Sci. USA 114, 9296–9301 (2017).
- 46.
Smit, H. A. et al. An overview of the context and scope of wheat (Triticum aestivum) research in South Africa from 1983 to 2008. South Afr. J. Plant Soil 27, 81–96 (2010).
- 47.
Reynolds, M. et al. Achieving yield gains in wheat: achieving yield gains in wheat. Plant, Cell Environ. 35, 1799–1823 (2012).
- 48.
Slafer, G. A., Savin, R. & Sadras, V. O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Res. 157, 71–83 (2014).
- 49.
Cui, F. et al. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor. Appl. Genet. 127, 659–675 (2014).
- 50.
Edae, E. A., Byrne, P. F., Haley, S. D., Lopes, M. S. & Reynolds, M. P. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor. Appl. Genet. 127, 791–807 (2014).
- 51.
Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607–610 (2008).
- 52.
Hulme, M., Doherty, R., Ngara, T., New, M. & Lister, D. African climate change: 1900-2100. Clim. Res. 17, 145–168 (2001).
- 53.
Tai, A. P. K., Martin, M. V. & Heald, C. L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Change 4, 817–821 (2014).
- 54.
Cooper, P. J. M. et al. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agriculture, Ecosyst. Environ. 126, 24–35 (2008).
- 55.
Lobell, D. B. & Asseng, S. Comparing estimates of climate change impacts from process-based and statistical crop models. Environ. Res. Lett. 12, 015001 (2017).
- 56.
Morton, J. F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl Acad. Sci. USA 104, 19680–19685 (2007).
- 57.
Eshed, Y. & Lippman, Z. B. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science eaax0025. https://doi.org/10.1126/science.aax0025 (2019).
- 58.
Fu, Y.-B. et al. Elevated mutation and selection in wild emmer wheat in response to 28 years of global warming. Proc. Natl Acad. Sci. USA 201909564 https://doi.org/10.1073/pnas.1909564116 (2019).
- 59.
Sparks, A., Hengl, T. & Nelson, A. GSODR: global summary daily weather data in R. J. Open Source Softw. 2, 177 (2017).
- 60.
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas: New climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
- 61.
Shew, A. M., Tack, J. B., Nalley, L. L. & Chaminuka, P. Replication data for: yield reduction under climate warming varies among wheat cultivars in South Africa. Harvard Dataverse. https://doi.org/10.7910/DVN/8Y6Q7F (2020).
- 62.
Barlow, K. M., Christy, B. P., O’Leary, G. J., Riffkin, P. A. & Nuttall, J. G. Simulating the impact of extreme heat and frost events on wheat crop production: a review. Field Crops Res. 171, 109–119 (2015).
- 63.
Liu, B. et al. Post-heading heat stress and yield impact in winter wheat of China. Glob. Change Biol. 20, 372–381 (2014).
- 64.
Semenov, M. A. & Shewry, P. R. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci. Rep. 1, 66 (2011).
- 65.
Cameron, C. A. & Miller, D. L. A practitioner’s guide to cluster-robust inference. J. Hum. Resour. 50, 317–372 (2015).
- 66.
Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/hierarchical Models. (Cambridge University Press, 2006).
- 67.
Rowhani, P., Lobell, D. B., Linderman, M. & Ramankutty, N. Climate variability and crop production in Tanzania. Agric. For. Meteorol. 151, 449–460 (2011).
- 68.
Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).
- 69.
Lobell, D. B., Sibley, A. & Ivan Ortiz-Monasterio, J. Extreme heat effects on wheat senescence in India. Nat. Clim. Change 2, 186–189 (2012).
Comments
Something to say?
Log in or Sign up for free