Welcome to the IKCEST
Yield reduction under climate warming varies among wheat cultivars in South Africa
  1. 1.

    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143 (2014).

    ADS  Google Scholar 

  2. 2.

    Asseng, S. et al. Hot spots of wheat yield decline with rising temperatures. Glob. Change Biol. 23, 2464–2472 (2017).

    ADS  Google Scholar 

  3. 3.

    Tack, J., Barkley, A. & Nalley, L. L. Effect of warming temperatures on US wheat yields. Proc. Natl Acad. Sci. USA 112, 6931–6936 (2015).

    ADS  CAS  PubMed  Google Scholar 

  4. 4.

    Niang, I. et al. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Ch. 22 Africa. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1199–1265 (2014).

  5. 5.

    Maúre, G. et al. The southern African climate under 1.5 °C and 2 °C of global warming as simulated by CORDEX regional climate models. Environ. Res. Lett. 13, 065002 (2018).

    ADS  Google Scholar 

  6. 6.

    Dosio, A. et al. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 53, 5833–5858 (2019).

    Google Scholar 

  7. 7.

    Ziervogel, G. et al. Climate change impacts and adaptation in South Africa: climate change impacts in South Africa. Wiley Interdiscip. Rev. Clim. Change 5, 605–620 (2014).

    Google Scholar 

  8. 8.

    Knox, J., Hess, T., Daccache, A. & Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 7, 034032 (2012).

    ADS  Google Scholar 

  9. 9.

    Fischer, T., Byerlee, D. & Edmeades, G. Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph No. 158. Australian Centre for International Agricultural Research: Canberra, 65–126 (2014).

  10. 10.

    Schlenker, W. & Lobell, D. B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 5, 014010 (2010).

    ADS  Google Scholar 

  11. 11.

    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).

    ADS  Google Scholar 

  12. 12.

    Roberts, M. J., Braun, N. O., Sinclair, T. R., Lobell, D. B. & Schlenker, W. Comparing and combining process-based crop models and statistical models with some implications for climate change. Environ. Res. Lett. 12, 095010 (2017).

    ADS  Google Scholar 

  13. 13.

    Nalley, L., Dixon, B., Chaminuka, P., Naledzani, Z. & Coale, M. J. The role of public wheat breeding in reducing food insecurity in South Africa. PLoS ONE 13, e0209598 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Tadesse, W., Bishaw, Z. & Assefa, S. Wheat production and breeding in Sub-Saharan Africa: challenges and opportunities in the face of climate change. Int. J. Clim. Change Strateg. Manag. 11, 696–715 (2019).

    Google Scholar 

  15. 15.

    Dube, E. et al. Genetic progress of spring wheat grain yield in various production regions of South Africa. South Afr. J. Plant Soil 36, 33–39 (2019).

    Google Scholar 

  16. 16.

    McGuire, S. & Sperling, L. Seed systems smallholder farmers use. Food Security 8, 179–195 (2016).

    Google Scholar 

  17. 17.

    Atlin, G. N., Cairns, J. E. & Das, B. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob. Food Security 12, 31–37 (2017).

    Google Scholar 

  18. 18.

    Leichenko, R. M. & O’Brien, K. L. The dynamics of rural vulnerability to global change: the case of southern Africa. Mitig. Adapt. Strateg. Glob. Change 7, 1–18 (2002).

    Google Scholar 

  19. 19.

    Challinor, A. J., Koehler, A.-K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).

    ADS  Google Scholar 

  20. 20.

    Burke, M. B., Lobell, D. B. & Guarino, L. Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Glob. Environ. Change 19, 317–325 (2009).

    Google Scholar 

  21. 21.

    SADC. Over 41.4 Million People In Southern Africa are Food Insecure. https://www.sadc.int/news-events/news/over-414-million-people-southern-africa-are-food-insecure/ (2016).

  22. 22.

    Otto, F. E. L. et al. Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environ. Res. Lett. 13, 124010 (2018).

    ADS  Google Scholar 

  23. 23.

    Cullis, J. et al. An Uncertainty Approach to Modelling Climate Change Risk in South Africa. Vol. 2015 (UNU-WIDER, 2015).

  24. 24.

    Conway, D. et al. Climate and southern Africa’s water–energy–food nexus. Nat. Clim. Change 5, 837 (2015).

    ADS  Google Scholar 

  25. 25.

    Dube, Toi J. Tsilo, Nondumiso Z. Sosibo & Morris Fanadzo. Irrigation wheat production constraints and opportunities in South Africa. S. Afr. J. Sci. 116, 1–6 (2020).

  26. 26.

    GAIN. Global and Feed Annual Report: South Africa. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Grain%20and%20Feed%20Annual_Pretoria_South%20Africa%20-%20Republic%20of_3-27-2018.pdf (2018).

  27. 27.

    Chisanga, B. et al. Modelling Wheat and Sugar Markets in Eastern and Southern Africa Regional Network of Agricultural Policy Research Institutes (ReNAPRI). (Publications Office, 2016).

  28. 28.

    Mason, N. M., Jayne, T. S. & Shiferaw, B. Africa’s rising demand for wheat: trends, drivers, and policy implications. Dev. Policy Rev. 33, 581–613 (2015).

    Google Scholar 

  29. 29.

    GAIN. Global and Feed Annual Report: Zimbabwe. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/GRAIN%20AND%20FEED%20ANNUAL%20REPORT%20_Pretoria_Zimbabwe_7-26-2017.pdf (2017).

  30. 30.

    Asseng, S., Foster, I. & Turner, N. C. The impact of temperature variability on wheat yields: Impact of temperature variability on wheat yields. Glob. Change Biol. 17, 997–1012 (2011).

    ADS  Google Scholar 

  31. 31.

    Gibson, L. R. & Paulsen, G. M. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci. 39, 1841 (1999).

    Google Scholar 

  32. 32.

    Ferris, R., Ellis, R., Wheeler, T. & Hadley, P. Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann. Bot. 82, 631–639 (1998).

    Google Scholar 

  33. 33.

    Bennie, A. T. P. & Hensley, M. Maximizing precipitation utilization in dryland agriculture in South Africa—a review. J. Hydrol. 241, 124–139 (2001).

    ADS  Google Scholar 

  34. 34.

    Baudoin, M.-A., Vogel, C., Nortje, K. & Naik, M. Living with drought in South Africa: lessons learnt from the recent El Niño drought period. Int. J. Disaster Risk Reduct. 23, 128–137 (2017).

    Google Scholar 

  35. 35.

    STATSA. General Household Survey-Statistics South Africa. http://www.statssa.gov.za/?p=9922 (2016).

  36. 36.

    Challinor, A., Wheeler, T., Garforth, C., Craufurd, P. & Kassam, A. Assessing the vulnerability of food crop systems in Africa to climate change. Climatic Change 83, 381–399 (2007).

    ADS  Google Scholar 

  37. 37.

    Khan, Z. R. et al. Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020. Philos. Trans. R. Soc. B Biol. Sci. 369, 20120284–20120284 (2014).

    Google Scholar 

  38. 38.

    Fisher, M. et al. Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: determinants of adoption in eastern and southern Africa. Climatic Change 133, 283–299 (2015).

    ADS  Google Scholar 

  39. 39.

    Kay, G. & Washington, R. Future southern African summer rainfall variability related to a southwest Indian Ocean dipole in HadCM3. Geophys. Res. Lett. 35, n/a–n/a (2008).

    Google Scholar 

  40. 40.

    Kruger, A. C. & Sekele, S. S. Trends in extreme temperature indices in South Africa: 1962-2009. Int. J. Climatol. 33, 661–676 (2013).

    Google Scholar 

  41. 41.

    Moise, A. F. & Hudson, D. A. Probabilistic predictions of climate change for Australia and southern Africa using the reliability ensemble average of IPCC CMIP3 model simulations. J. Geophys. Res. 113, D15 (2008).

  42. 42.

    Spano, D., Duce, P., Snyder, R. L. & Cesaraccio, C. An improved model for determining degree-day values from daily temperature data. Int. J. Biometeorol. 45, 161–169 (2001).

    PubMed  Google Scholar 

  43. 43.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    ADS  CAS  PubMed  Google Scholar 

  44. 44.

    USDA-FAS. Commodity Intelligence Report: South Africa. https://ipad.fas.usda.gov/highlights/2017/01/SouthAfrica/index.htm (2017).

  45. 45.

    Tack, J., Lingenfelser, J. & Jagadish, S. V. K. Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs. Proc. Natl Acad. Sci. USA 114, 9296–9301 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Smit, H. A. et al. An overview of the context and scope of wheat (Triticum aestivum) research in South Africa from 1983 to 2008. South Afr. J. Plant Soil 27, 81–96 (2010).

    Google Scholar 

  47. 47.

    Reynolds, M. et al. Achieving yield gains in wheat: achieving yield gains in wheat. Plant, Cell Environ. 35, 1799–1823 (2012).

    Google Scholar 

  48. 48.

    Slafer, G. A., Savin, R. & Sadras, V. O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Res. 157, 71–83 (2014).

    Google Scholar 

  49. 49.

    Cui, F. et al. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor. Appl. Genet. 127, 659–675 (2014).

    PubMed  Google Scholar 

  50. 50.

    Edae, E. A., Byrne, P. F., Haley, S. D., Lopes, M. S. & Reynolds, M. P. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor. Appl. Genet. 127, 791–807 (2014).

    CAS  PubMed  Google Scholar 

  51. 51.

    Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607–610 (2008).

    CAS  PubMed  Google Scholar 

  52. 52.

    Hulme, M., Doherty, R., Ngara, T., New, M. & Lister, D. African climate change: 1900-2100. Clim. Res. 17, 145–168 (2001).

    Google Scholar 

  53. 53.

    Tai, A. P. K., Martin, M. V. & Heald, C. L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Change 4, 817–821 (2014).

    ADS  CAS  Google Scholar 

  54. 54.

    Cooper, P. J. M. et al. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agriculture, Ecosyst. Environ. 126, 24–35 (2008).

    Google Scholar 

  55. 55.

    Lobell, D. B. & Asseng, S. Comparing estimates of climate change impacts from process-based and statistical crop models. Environ. Res. Lett. 12, 015001 (2017).

    ADS  Google Scholar 

  56. 56.

    Morton, J. F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl Acad. Sci. USA 104, 19680–19685 (2007).

    ADS  CAS  PubMed  Google Scholar 

  57. 57.

    Eshed, Y. & Lippman, Z. B. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science eaax0025. https://doi.org/10.1126/science.aax0025 (2019).

  58. 58.

    Fu, Y.-B. et al. Elevated mutation and selection in wild emmer wheat in response to 28 years of global warming. Proc. Natl Acad. Sci. USA 201909564 https://doi.org/10.1073/pnas.1909564116 (2019).

  59. 59.

    Sparks, A., Hengl, T. & Nelson, A. GSODR: global summary daily weather data in R. J. Open Source Softw. 2, 177 (2017).

    ADS  Google Scholar 

  60. 60.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas: New climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  61. 61.

    Shew, A. M., Tack, J. B., Nalley, L. L. & Chaminuka, P. Replication data for: yield reduction under climate warming varies among wheat cultivars in South Africa. Harvard Dataverse. https://doi.org/10.7910/DVN/8Y6Q7F (2020).

  62. 62.

    Barlow, K. M., Christy, B. P., O’Leary, G. J., Riffkin, P. A. & Nuttall, J. G. Simulating the impact of extreme heat and frost events on wheat crop production: a review. Field Crops Res. 171, 109–119 (2015).

    Google Scholar 

  63. 63.

    Liu, B. et al. Post-heading heat stress and yield impact in winter wheat of China. Glob. Change Biol. 20, 372–381 (2014).

    ADS  Google Scholar 

  64. 64.

    Semenov, M. A. & Shewry, P. R. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci. Rep. 1, 66 (2011).

  65. 65.

    Cameron, C. A. & Miller, D. L. A practitioner’s guide to cluster-robust inference. J. Hum. Resour. 50, 317–372 (2015).

    Google Scholar 

  66. 66.

    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/hierarchical Models. (Cambridge University Press, 2006).

  67. 67.

    Rowhani, P., Lobell, D. B., Linderman, M. & Ramankutty, N. Climate variability and crop production in Tanzania. Agric. For. Meteorol. 151, 449–460 (2011).

    ADS  Google Scholar 

  68. 68.

    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).

  69. 69.

    Lobell, D. B., Sibley, A. & Ivan Ortiz-Monasterio, J. Extreme heat effects on wheat senescence in India. Nat. Clim. Change 2, 186–189 (2012).

    ADS  Google Scholar 

Original Text (This is the original text for your reference.)

  1. 1.

    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143 (2014).

    ADS  Google Scholar 

  2. 2.

    Asseng, S. et al. Hot spots of wheat yield decline with rising temperatures. Glob. Change Biol. 23, 2464–2472 (2017).

    ADS  Google Scholar 

  3. 3.

    Tack, J., Barkley, A. & Nalley, L. L. Effect of warming temperatures on US wheat yields. Proc. Natl Acad. Sci. USA 112, 6931–6936 (2015).

    ADS  CAS  PubMed  Google Scholar 

  4. 4.

    Niang, I. et al. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Ch. 22 Africa. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1199–1265 (2014).

  5. 5.

    Maúre, G. et al. The southern African climate under 1.5 °C and 2 °C of global warming as simulated by CORDEX regional climate models. Environ. Res. Lett. 13, 065002 (2018).

    ADS  Google Scholar 

  6. 6.

    Dosio, A. et al. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 53, 5833–5858 (2019).

    Google Scholar 

  7. 7.

    Ziervogel, G. et al. Climate change impacts and adaptation in South Africa: climate change impacts in South Africa. Wiley Interdiscip. Rev. Clim. Change 5, 605–620 (2014).

    Google Scholar 

  8. 8.

    Knox, J., Hess, T., Daccache, A. & Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 7, 034032 (2012).

    ADS  Google Scholar 

  9. 9.

    Fischer, T., Byerlee, D. & Edmeades, G. Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph No. 158. Australian Centre for International Agricultural Research: Canberra, 65–126 (2014).

  10. 10.

    Schlenker, W. & Lobell, D. B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 5, 014010 (2010).

    ADS  Google Scholar 

  11. 11.

    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).

    ADS  Google Scholar 

  12. 12.

    Roberts, M. J., Braun, N. O., Sinclair, T. R., Lobell, D. B. & Schlenker, W. Comparing and combining process-based crop models and statistical models with some implications for climate change. Environ. Res. Lett. 12, 095010 (2017).

    ADS  Google Scholar 

  13. 13.

    Nalley, L., Dixon, B., Chaminuka, P., Naledzani, Z. & Coale, M. J. The role of public wheat breeding in reducing food insecurity in South Africa. PLoS ONE 13, e0209598 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Tadesse, W., Bishaw, Z. & Assefa, S. Wheat production and breeding in Sub-Saharan Africa: challenges and opportunities in the face of climate change. Int. J. Clim. Change Strateg. Manag. 11, 696–715 (2019).

    Google Scholar 

  15. 15.

    Dube, E. et al. Genetic progress of spring wheat grain yield in various production regions of South Africa. South Afr. J. Plant Soil 36, 33–39 (2019).

    Google Scholar 

  16. 16.

    McGuire, S. & Sperling, L. Seed systems smallholder farmers use. Food Security 8, 179–195 (2016).

    Google Scholar 

  17. 17.

    Atlin, G. N., Cairns, J. E. & Das, B. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob. Food Security 12, 31–37 (2017).

    Google Scholar 

  18. 18.

    Leichenko, R. M. & O’Brien, K. L. The dynamics of rural vulnerability to global change: the case of southern Africa. Mitig. Adapt. Strateg. Glob. Change 7, 1–18 (2002).

    Google Scholar 

  19. 19.

    Challinor, A. J., Koehler, A.-K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).

    ADS  Google Scholar 

  20. 20.

    Burke, M. B., Lobell, D. B. & Guarino, L. Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Glob. Environ. Change 19, 317–325 (2009).

    Google Scholar 

  21. 21.

    SADC. Over 41.4 Million People In Southern Africa are Food Insecure. https://www.sadc.int/news-events/news/over-414-million-people-southern-africa-are-food-insecure/ (2016).

  22. 22.

    Otto, F. E. L. et al. Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environ. Res. Lett. 13, 124010 (2018).

    ADS  Google Scholar 

  23. 23.

    Cullis, J. et al. An Uncertainty Approach to Modelling Climate Change Risk in South Africa. Vol. 2015 (UNU-WIDER, 2015).

  24. 24.

    Conway, D. et al. Climate and southern Africa’s water–energy–food nexus. Nat. Clim. Change 5, 837 (2015).

    ADS  Google Scholar 

  25. 25.

    Dube, Toi J. Tsilo, Nondumiso Z. Sosibo & Morris Fanadzo. Irrigation wheat production constraints and opportunities in South Africa. S. Afr. J. Sci. 116, 1–6 (2020).

  26. 26.

    GAIN. Global and Feed Annual Report: South Africa. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Grain%20and%20Feed%20Annual_Pretoria_South%20Africa%20-%20Republic%20of_3-27-2018.pdf (2018).

  27. 27.

    Chisanga, B. et al. Modelling Wheat and Sugar Markets in Eastern and Southern Africa Regional Network of Agricultural Policy Research Institutes (ReNAPRI). (Publications Office, 2016).

  28. 28.

    Mason, N. M., Jayne, T. S. & Shiferaw, B. Africa’s rising demand for wheat: trends, drivers, and policy implications. Dev. Policy Rev. 33, 581–613 (2015).

    Google Scholar 

  29. 29.

    GAIN. Global and Feed Annual Report: Zimbabwe. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/GRAIN%20AND%20FEED%20ANNUAL%20REPORT%20_Pretoria_Zimbabwe_7-26-2017.pdf (2017).

  30. 30.

    Asseng, S., Foster, I. & Turner, N. C. The impact of temperature variability on wheat yields: Impact of temperature variability on wheat yields. Glob. Change Biol. 17, 997–1012 (2011).

    ADS  Google Scholar 

  31. 31.

    Gibson, L. R. & Paulsen, G. M. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci. 39, 1841 (1999).

    Google Scholar 

  32. 32.

    Ferris, R., Ellis, R., Wheeler, T. & Hadley, P. Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann. Bot. 82, 631–639 (1998).

    Google Scholar 

  33. 33.

    Bennie, A. T. P. & Hensley, M. Maximizing precipitation utilization in dryland agriculture in South Africa—a review. J. Hydrol. 241, 124–139 (2001).

    ADS  Google Scholar 

  34. 34.

    Baudoin, M.-A., Vogel, C., Nortje, K. & Naik, M. Living with drought in South Africa: lessons learnt from the recent El Niño drought period. Int. J. Disaster Risk Reduct. 23, 128–137 (2017).

    Google Scholar 

  35. 35.

    STATSA. General Household Survey-Statistics South Africa. http://www.statssa.gov.za/?p=9922 (2016).

  36. 36.

    Challinor, A., Wheeler, T., Garforth, C., Craufurd, P. & Kassam, A. Assessing the vulnerability of food crop systems in Africa to climate change. Climatic Change 83, 381–399 (2007).

    ADS  Google Scholar 

  37. 37.

    Khan, Z. R. et al. Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020. Philos. Trans. R. Soc. B Biol. Sci. 369, 20120284–20120284 (2014).

    Google Scholar 

  38. 38.

    Fisher, M. et al. Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: determinants of adoption in eastern and southern Africa. Climatic Change 133, 283–299 (2015).

    ADS  Google Scholar 

  39. 39.

    Kay, G. & Washington, R. Future southern African summer rainfall variability related to a southwest Indian Ocean dipole in HadCM3. Geophys. Res. Lett. 35, n/a–n/a (2008).

    Google Scholar 

  40. 40.

    Kruger, A. C. & Sekele, S. S. Trends in extreme temperature indices in South Africa: 1962-2009. Int. J. Climatol. 33, 661–676 (2013).

    Google Scholar 

  41. 41.

    Moise, A. F. & Hudson, D. A. Probabilistic predictions of climate change for Australia and southern Africa using the reliability ensemble average of IPCC CMIP3 model simulations. J. Geophys. Res. 113, D15 (2008).

  42. 42.

    Spano, D., Duce, P., Snyder, R. L. & Cesaraccio, C. An improved model for determining degree-day values from daily temperature data. Int. J. Biometeorol. 45, 161–169 (2001).

    PubMed  Google Scholar 

  43. 43.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    ADS  CAS  PubMed  Google Scholar 

  44. 44.

    USDA-FAS. Commodity Intelligence Report: South Africa. https://ipad.fas.usda.gov/highlights/2017/01/SouthAfrica/index.htm (2017).

  45. 45.

    Tack, J., Lingenfelser, J. & Jagadish, S. V. K. Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs. Proc. Natl Acad. Sci. USA 114, 9296–9301 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Smit, H. A. et al. An overview of the context and scope of wheat (Triticum aestivum) research in South Africa from 1983 to 2008. South Afr. J. Plant Soil 27, 81–96 (2010).

    Google Scholar 

  47. 47.

    Reynolds, M. et al. Achieving yield gains in wheat: achieving yield gains in wheat. Plant, Cell Environ. 35, 1799–1823 (2012).

    Google Scholar 

  48. 48.

    Slafer, G. A., Savin, R. & Sadras, V. O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Res. 157, 71–83 (2014).

    Google Scholar 

  49. 49.

    Cui, F. et al. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor. Appl. Genet. 127, 659–675 (2014).

    PubMed  Google Scholar 

  50. 50.

    Edae, E. A., Byrne, P. F., Haley, S. D., Lopes, M. S. & Reynolds, M. P. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor. Appl. Genet. 127, 791–807 (2014).

    CAS  PubMed  Google Scholar 

  51. 51.

    Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607–610 (2008).

    CAS  PubMed  Google Scholar 

  52. 52.

    Hulme, M., Doherty, R., Ngara, T., New, M. & Lister, D. African climate change: 1900-2100. Clim. Res. 17, 145–168 (2001).

    Google Scholar 

  53. 53.

    Tai, A. P. K., Martin, M. V. & Heald, C. L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Change 4, 817–821 (2014).

    ADS  CAS  Google Scholar 

  54. 54.

    Cooper, P. J. M. et al. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agriculture, Ecosyst. Environ. 126, 24–35 (2008).

    Google Scholar 

  55. 55.

    Lobell, D. B. & Asseng, S. Comparing estimates of climate change impacts from process-based and statistical crop models. Environ. Res. Lett. 12, 015001 (2017).

    ADS  Google Scholar 

  56. 56.

    Morton, J. F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl Acad. Sci. USA 104, 19680–19685 (2007).

    ADS  CAS  PubMed  Google Scholar 

  57. 57.

    Eshed, Y. & Lippman, Z. B. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science eaax0025. https://doi.org/10.1126/science.aax0025 (2019).

  58. 58.

    Fu, Y.-B. et al. Elevated mutation and selection in wild emmer wheat in response to 28 years of global warming. Proc. Natl Acad. Sci. USA 201909564 https://doi.org/10.1073/pnas.1909564116 (2019).

  59. 59.

    Sparks, A., Hengl, T. & Nelson, A. GSODR: global summary daily weather data in R. J. Open Source Softw. 2, 177 (2017).

    ADS  Google Scholar 

  60. 60.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas: New climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  61. 61.

    Shew, A. M., Tack, J. B., Nalley, L. L. & Chaminuka, P. Replication data for: yield reduction under climate warming varies among wheat cultivars in South Africa. Harvard Dataverse. https://doi.org/10.7910/DVN/8Y6Q7F (2020).

  62. 62.

    Barlow, K. M., Christy, B. P., O’Leary, G. J., Riffkin, P. A. & Nuttall, J. G. Simulating the impact of extreme heat and frost events on wheat crop production: a review. Field Crops Res. 171, 109–119 (2015).

    Google Scholar 

  63. 63.

    Liu, B. et al. Post-heading heat stress and yield impact in winter wheat of China. Glob. Change Biol. 20, 372–381 (2014).

    ADS  Google Scholar 

  64. 64.

    Semenov, M. A. & Shewry, P. R. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci. Rep. 1, 66 (2011).

  65. 65.

    Cameron, C. A. & Miller, D. L. A practitioner’s guide to cluster-robust inference. J. Hum. Resour. 50, 317–372 (2015).

    Google Scholar 

  66. 66.

    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/hierarchical Models. (Cambridge University Press, 2006).

  67. 67.

    Rowhani, P., Lobell, D. B., Linderman, M. & Ramankutty, N. Climate variability and crop production in Tanzania. Agric. For. Meteorol. 151, 449–460 (2011).

    ADS  Google Scholar 

  68. 68.

    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).

  69. 69.

    Lobell, D. B., Sibley, A. & Ivan Ortiz-Monasterio, J. Extreme heat effects on wheat senescence in India. Nat. Clim. Change 2, 186–189 (2012).

    ADS  Google Scholar 

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel