Welcome to the IKCEST
Cropland expansion in the United States produces marginal yields at high costs to wildlife
  1. 1.

    USDA. 2012 National Resources Inventory: Summary Report. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd396218.pdf (2015).

  2. 2.

    U.S. EPA. Biofuels and the Environment: The Second Triennial Report to Congress. 159 (2018).

  3. 3.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, https://doi.org/10.1029/2007GB002947 (2008).

  4. 4.

    Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

    ADS  Google Scholar 

  5. 5.

    Spawn, S. A., Lark, T. J. & Gibbs, H. K. Carbon emissions from cropland expansion in the United States. Environ. Res. Lett. 14, 045009 (2019).

    ADS  CAS  Google Scholar 

  6. 6.

    Yu, Z., Lu, C., Tian, H. & Canadell, J. G. Largely underestimated carbon emission from land use and land cover change in the conterminous US. Glob. Change Biol. 25, 3741–3752 (2019).

  7. 7.

    West, P. C. et al. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    ADS  CAS  PubMed  Google Scholar 

  8. 8.

    Johnson, J. A., Runge, C. F., Senauer, B., Foley, J. & Polasky, S. Global agriculture and carbon trade-offs. Proc. Natl Acad. Sci. USA 111, 12342–12347 (2014).

    ADS  CAS  PubMed  Google Scholar 

  9. 9.

    Lark, T. J., Salmon, J. M. & Gibbs, H. K. Cropland expansion outpaces agricultural and biofuel policies in the United States. Environ. Res. Lett. 10, 044003 (2015).

    ADS  Google Scholar 

  10. 10.

    Henwood, W. D. & TOWARD, A. Strategy for the conservation and protection of the world’s temperate grasslands. Gt. Plains Res. 20, 121–134 (2010).

    Google Scholar 

  11. 11.

    Tollefson, J. One million species face extinction. Nature 569, 171 (2019).

    ADS  CAS  PubMed  Google Scholar 

  12. 12.

    Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf Advance Unedited Version (2019).

  13. 13.

    Werling, B. P. et al. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proc. Natl Acad. Sci. USA 111, 1652–1657 (2014).

    ADS  CAS  PubMed  Google Scholar 

  14. 14.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    ADS  CAS  PubMed  Google Scholar 

  15. 15.

    Meehan, T. D., Hurlbert, A. H. & Gratton, C. Bird communities in future bioenergy landscapes of the Upper Midwest. Proc. Natl Acad. Sci. USA 107, 18533–18538 (2010).

    ADS  CAS  PubMed  Google Scholar 

  16. 16.

    Thogmartin, W. E. et al. Restoring monarch butterfly habitat in the Midwestern US: ‘all hands on deck’. Environ. Res. Lett. 12, 074005 (2017).

    ADS  Google Scholar 

  17. 17.

    Smith, G. W. A Critical Review of the Aerial and Ground Surveys of Breeding Waterfowl in North America. https://apps.dtic.mil/docs/citations/ADA322667 (1995).

  18. 18.

    Bakker, K. K. & Higgins, K. F. Planted grasslands and native sod prairie: equivalent habitat for grassland birds? West. North Am. Nat. 69, 235–242 (2009).

    Google Scholar 

  19. 19.

    Dodds, W. K. et al. Comparing ecosystem goods and services provided by restored and native lands. BioScience 58, 837–845 (2008).

    Google Scholar 

  20. 20.

    Lark, T. J., Larson, B., Schelly, I., Batish, S. & Gibbs, H. K. Accelerated conversion of native prairie to cropland in Minnesota. Environ. Conserv. 1–8 https://doi.org/10.1017/S0376892918000437 (2019).

  21. 21.

    Wimberly, M. C. et al. Cropland expansion and grassland loss in the eastern Dakotas: New insights from a farm-level survey. Land Use Policy 63, 160–173 (2017).

    Google Scholar 

  22. 22.

    Boryan, C., Yang, Z., Mueller, R. & Craig, M. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 26, 341–358 (2011).

    Google Scholar 

  23. 23.

    Caro, T. Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship, and Other Surrogate Species (Island Press, 2010).

  24. 24.

    Yu, Z. & Lu, C. Historical cropland expansion and abandonment in the continental U.S. during 1850 to 2016. Glob. Ecol. Biogeogr. 27, 322–333 (2018).

    MathSciNet  Google Scholar 

  25. 25.

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Haan, N. L. & Landis, D. A. The importance of shifting disturbance regimes in monarch butterfly decline and recovery. Front. Ecol. Evol. 7, 191 (2019).

  27. 27.

    Lukens, L. et al. Monarch habitat in conservation grasslands. Front. Ecol. Evol. 8, 13 (2020).

  28. 28.

    Reynolds, R. E., Shaffer, T. L., Loesch, C. R. & Cox, R. R. The farm bill and duck production in the prairie pothole region: increasing the benefits. Wildl. Soc. Bull. 34, 963–974 (2006).

    Google Scholar 

  29. 29.

    Walker, J. et al. An integrated strategy for grassland easement acquisition in the Prairie Pothole Region, USA. J. Fish. Wildl. Manag. 4, 267–279 (2013).

    Google Scholar 

  30. 30.

    USDA, N. 2017 Census of Agriculture. https://www.nass.usda.gov/Publications/AgCensus/2017/index.php#full_report (2019).

  31. 31.

    USDA. 2015 National Resources Inventory: Summary Report. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd396218.pdf (2018).

  32. 32.

    Yang, L. et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).

    ADS  Google Scholar 

  33. 33.

    Estel, S. et al. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 163, 312–325 (2015).

    ADS  Google Scholar 

  34. 34.

    Yin, H. et al. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 210, 12–24 (2018).

    ADS  Google Scholar 

  35. 35.

    Yin, H. et al. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 246, 111873 (2020).

    ADS  Google Scholar 

  36. 36.

    Anderson, J. R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data (U.S. Government Printing Office, 1976).

  37. 37.

    Rogan, J. et al. Land-cover change monitoring with classification trees using landsat TM and ancillary data. Photogramm. Eng. Rem. Sensing 69, 793–804 (2003).

  38. 38.

    Johnson, D. M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 141, 116–128 (2014).

    ADS  Google Scholar 

  39. 39.

    Kukal, M. S. & Irmak, S. U.S. agro-climate in 20th century: growing degree days, first and last frost, growing season length, and impacts on crop yields. Sci. Rep. 8, 1–14 (2018).

    ADS  Google Scholar 

  40. 40.

    Ramankutty, N., Foley, J. A., Norman, J. & McSweeney, K. The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 11, 377–392 (2002).

    Google Scholar 

  41. 41.

    Lubowski, R. N. et al. Environmental Effects of Agricultural Land-use Change: The Role of Economics and Policy https://doi.org/10.22004/ag.econ.33591 (2006).

  42. 42.

    Hendricks, N. P. & Er, E. Changes in cropland area in the United States and the role of CRP. Food Policy 75, 15–23 (2018).

    Google Scholar 

  43. 43.

    Alonso, W. Location and land use. Toward a general theory of land rent. Locat. Land Use Gen. Theory Land Rent 204 (1964).

  44. 44.

    Wimberly, M. C., Narem, D. M., Bauman, P. J., Carlson, B. T. & Ahlering, M. A. Grassland connectivity in fragmented agricultural landscapes of the north-central United States. Biol. Conserv. 217, 121–130 (2018).

    Google Scholar 

  45. 45.

    Bennett, A. F. Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation (Iucn, 1999).

  46. 46.

    Helms, D. Readings in the History of the Soil Conservation Service, Washington, DC. Read. Hist. Soil Conserv. Serv. 60–73 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/about/history/?cid=nrcs143_021436 (1992).

  47. 47.

    Abubakar, M. S., Ahmad, D. & Akande, F. B. A review of farm tractor overturning accidents and safety. Pertanika J. Sci. Technol. 18, 377–385 (2010).

    Google Scholar 

  48. 48.

    Xie, Y., Lark, T. J., Brown, J. F. & Gibbs, H. K. Mapping irrigated cropland extent across the conterminous United States at 30 m resolution using a semi-automatic training approach on Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 155, 136–149 (2019).

    ADS  Google Scholar 

  49. 49.

    Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    ADS  CAS  PubMed  Google Scholar 

  50. 50.

    Oberhauser, K. & Guiney, M. Insects as flagship conservation species. Terr. Arthropod. Rev. 1, 111–123 (2009).

    Google Scholar 

  51. 51.

    Gustafsson, K. M., Agrawal, A. A., Lewenstein, B. V. & Wolf, S. A. The monarch butterfly through time and space: the social construction of an icon. BioScience 65, 612–622 (2015).

    Google Scholar 

  52. 52.

    Pleasants, J. Milkweed restoration in the Midwest for monarch butterfly recovery: estimates of milkweeds lost, milkweeds remaining and milkweeds that must be added to increase the monarch population. Insect Conserv. Divers. https://doi.org/10.1111/icad.12198 (2016).

  53. 53.

    Thogmartin, W. E. et al. Monarch butterfly population decline in North America: identifying the threatening processes. R. Soc. Open Sci. 4, 170760 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Stenoien, C. et al. Monarchs in decline: a collateral landscape-level effect of modern agriculture. Insect Sci. 25, 528–541 (2018).

    PubMed  Google Scholar 

  55. 55.

    Lipsey, M. K. et al. One step ahead of the plow: Using cropland conversion risk to guide Sprague’s Pipit conservation in the northern Great Plains. Biol. Conserv. 191, 739–749 (2015).

    Google Scholar 

  56. 56.

    Runge, C. A. et al. Unintended habitat loss on private land from grazing restrictions on public rangelands. J. Appl. Ecol. 56, 52–62 (2019).

  57. 57.

    Sylvester, K. M., Gutmann, M. P. & Brown, D. G. At the margins: agriculture, subsidies and the shifting fate of North America’s native grassland. Popul. Environ. 37, 362–390 (2016).

    CAS  PubMed  Google Scholar 

  58. 58.

    Claassen, R., Wade, T., Breneman, V., Williams, R. & Loesch, C. Preserving native grassland: Can Sodsaver reduce cropland conversion? J. Soil Water Conserv. 73, 67A–73A (2018).

    Google Scholar 

  59. 59.

    Lark, T. J. Protecting our prairies: Research and policy actions for conserving America’s grasslands. Land Use Policy 97, 104727 (2020).

    Google Scholar 

  60. 60.

    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).

    PubMed  Google Scholar 

  61. 61.

    Yesson, C. et al. How global is the global biodiversity information facility? PLoS ONE 2, e1124 (2007).

  62. 62.

    Hertel, T. W. The global supply and demand for agricultural land in 2050: a perfect storm in the making? Am. J. Agric. Econ. 93, 259–275 (2011).

    Google Scholar 

  63. 63.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    ADS  CAS  PubMed  Google Scholar 

  64. 64.

    Babcock, B. A. Extensive and intensive agricultural supply response. Annu Rev. Resour. Econ. 7, 333–348 (2015).

    Google Scholar 

  65. 65.

    Zhao, X., Van Der Mensbrugghe, D. & Tyner, W. E., Modeling land physically in CGE models: new insights on intensive and extensive margins, 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258363, Agricultural and Applied Economics Association. https://doi.org/10.22004/ag.econ.258363 (2017).

  66. 66.

    Barr, K. J., Babcock, B. A., Carriquiry, M. A., Nassar, A. M. & Harfuch, L. Agricultural Land Elasticities in the United States and Brazil. Appl. Econ. Perspect. Policy 33, 449–462 (2011).

    Google Scholar 

  67. 67.

    Molotoks, A. et al. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob. Change Biol. 24, 5895–5908 (2018).

    Google Scholar 

  68. 68.

    Boysen, L. R., Lucht, W. & Gerten, D. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Glob. Change Biol. 23, 4303–4317 (2017).

    ADS  Google Scholar 

  69. 69.

    Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 1–10 (2019).

    ADS  CAS  Google Scholar 

  70. 70.

    Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).

  71. 71.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed  Google Scholar 

  72. 72.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS  CAS  PubMed  Google Scholar 

  73. 73.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    ADS  CAS  Google Scholar 

  74. 74.

    Mourad, M. Recycling, recovering and preventing “food waste”: competing solutions for food systems sustainability in the United States and France. J. Clean. Prod. 126, 461–477 (2016).

    Google Scholar 

  75. 75.

    Parfitt, J., Barthel, M. & Macnaughton, S. Food waste within food supply chains: quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 365, 3065–3081 (2010).

    Google Scholar 

  76. 76.

    Shepon, A., Eshel, G., Noor, E. & Milo, R. The opportunity cost of animal based diets exceeds all food losses. Proc. Natl Acad. Sci. USA 115, 3804–3809 (2018).

    CAS  PubMed  Google Scholar 

  77. 77.

    Lobell, D. B., Cassman, K. G. & Field, C. B. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179 (2009).

    Google Scholar 

  78. 78.

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    ADS  CAS  PubMed  Google Scholar 

  79. 79.

    Howell, T. A. Enhancing water use efficiency in irrigated agriculture. Agron. J. 93, 281–289 (2001).

    Google Scholar 

  80. 80.

    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    ADS  CAS  PubMed  Google Scholar 

  81. 81.

    Kladivko, E. J. et al. Cover crops in the upper midwestern United States: Potential adoption and reduction of nitrate leaching in the Mississippi River Basin. J. Soil Water Conserv. 69, 279–291 (2014).

    Google Scholar 

  82. 82.

    Basche, A. D. & DeLonge, M. S. Comparing infiltration rates in soils managed with conventional and alternative farming methods: A meta-analysis. PLoS ONE 14, e0215702 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Chandrasoma, J. M., Christianson, R. D. & Christianson, L. E. Saturated buffers: What is their potential impact across the US Midwest? Agric. Environ. Lett. 4, https://doi.org/10.2134/ael2018.11.0059 (2019).

  84. 84.

    Schulte, L. A. et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proc. Natl Acad. Sci. USA 114, 11247–11252 (2017).

    CAS  PubMed  Google Scholar 

  85. 85.

    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257 (2019).

    CAS  PubMed  Google Scholar 

  86. 86.

    Basso, B., Shuai, G., Zhang, J. & Robertson, G. P. Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Sci. Rep. 9, 5774 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    LaCanne, C. E. & Lundgren, J. G. Regenerative agriculture: merging farming and natural resource conservation profitably. PeerJ 6, e4428 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Lark, T. J., Mueller, R. M., Johnson, D. M. & Gibbs, H. K. Measuring land-use and land-cover change using the U.S. department of agriculture’s cropland data layer: Cautions and recommendations. Int. J. Appl. Earth Obs. Geoinf. 62, 224–235 (2017).

    ADS  Google Scholar 

  90. 90.

    Lark, T. J. America’s Food- and Fuel-Scapes: Quantifying Agricultural Land-Use Change Across the United States (The University of Wisconsin, Madison, 2017).

  91. 91.

    Homer, C. et al. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).

    Google Scholar 

  92. 92.

    Kim, K. E. Adaptive majority filtering for contextual classification of remote sensing data. Int. J. Remote Sens. 17, 1083–1087 (1996).

    ADS  Google Scholar 

  93. 93.

    Tobler, W. R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46, 234–240 (1970).

    Google Scholar 

  94. 94.

    Miller, H. J. Tobler’s first law and spatial analysis. Ann. Assoc. Am. Geogr. 94, 284–289 (2004).

    Google Scholar 

  95. 95.

    Breiman, L. Random forests. Mach. Learn 45, 5–32 (2001).

    MATH  Google Scholar 

  96. 96.

    Jeong, J. H. et al. Random forests for global and regional crop yield predictions. PLoS ONE 11, e0156571 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    USDA - National Agricultural Statistics Service. Guide to NASS Surveys http://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/index.php. (2020).

  98. 98.

    Soil Survey Staff, N. R. C. S., United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for the United States. (2018).

  99. 99.

    Gesch, D. et al. The national elevation dataset. Photogramm. Eng. Remote Sens. 68, 5–32 (2002).

    Google Scholar 

  100. 100.

    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    ADS  Google Scholar 

  101. 101.

    Team, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2017).

  102. 102.

    Hydric Soils—Introduction | NRCS Soils. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/hydric/?cid=nrcs142p2_053961 (2020).

  103. 103.

    Cowardin, L. M., Shaffer, T. L. & Arnold, P. M. Evaluations of Duck Habitat and Estimation of Duck Population Sizes with a Remote-Sensing-Based System. https://apps.dtic.mil/docs/citations/ADA322572 (1995).

  104. 104.

    Jin, S. et al. Overall methodology design for the United States national land cover database 2016 products. Remote Sens. 11, 2971 (2019).

    ADS  Google Scholar 

Original Text (This is the original text for your reference.)

  1. 1.

    USDA. 2012 National Resources Inventory: Summary Report. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd396218.pdf (2015).

  2. 2.

    U.S. EPA. Biofuels and the Environment: The Second Triennial Report to Congress. 159 (2018).

  3. 3.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, https://doi.org/10.1029/2007GB002947 (2008).

  4. 4.

    Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

    ADS  Google Scholar 

  5. 5.

    Spawn, S. A., Lark, T. J. & Gibbs, H. K. Carbon emissions from cropland expansion in the United States. Environ. Res. Lett. 14, 045009 (2019).

    ADS  CAS  Google Scholar 

  6. 6.

    Yu, Z., Lu, C., Tian, H. & Canadell, J. G. Largely underestimated carbon emission from land use and land cover change in the conterminous US. Glob. Change Biol. 25, 3741–3752 (2019).

  7. 7.

    West, P. C. et al. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    ADS  CAS  PubMed  Google Scholar 

  8. 8.

    Johnson, J. A., Runge, C. F., Senauer, B., Foley, J. & Polasky, S. Global agriculture and carbon trade-offs. Proc. Natl Acad. Sci. USA 111, 12342–12347 (2014).

    ADS  CAS  PubMed  Google Scholar 

  9. 9.

    Lark, T. J., Salmon, J. M. & Gibbs, H. K. Cropland expansion outpaces agricultural and biofuel policies in the United States. Environ. Res. Lett. 10, 044003 (2015).

    ADS  Google Scholar 

  10. 10.

    Henwood, W. D. & TOWARD, A. Strategy for the conservation and protection of the world’s temperate grasslands. Gt. Plains Res. 20, 121–134 (2010).

    Google Scholar 

  11. 11.

    Tollefson, J. One million species face extinction. Nature 569, 171 (2019).

    ADS  CAS  PubMed  Google Scholar 

  12. 12.

    Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf Advance Unedited Version (2019).

  13. 13.

    Werling, B. P. et al. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proc. Natl Acad. Sci. USA 111, 1652–1657 (2014).

    ADS  CAS  PubMed  Google Scholar 

  14. 14.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    ADS  CAS  PubMed  Google Scholar 

  15. 15.

    Meehan, T. D., Hurlbert, A. H. & Gratton, C. Bird communities in future bioenergy landscapes of the Upper Midwest. Proc. Natl Acad. Sci. USA 107, 18533–18538 (2010).

    ADS  CAS  PubMed  Google Scholar 

  16. 16.

    Thogmartin, W. E. et al. Restoring monarch butterfly habitat in the Midwestern US: ‘all hands on deck’. Environ. Res. Lett. 12, 074005 (2017).

    ADS  Google Scholar 

  17. 17.

    Smith, G. W. A Critical Review of the Aerial and Ground Surveys of Breeding Waterfowl in North America. https://apps.dtic.mil/docs/citations/ADA322667 (1995).

  18. 18.

    Bakker, K. K. & Higgins, K. F. Planted grasslands and native sod prairie: equivalent habitat for grassland birds? West. North Am. Nat. 69, 235–242 (2009).

    Google Scholar 

  19. 19.

    Dodds, W. K. et al. Comparing ecosystem goods and services provided by restored and native lands. BioScience 58, 837–845 (2008).

    Google Scholar 

  20. 20.

    Lark, T. J., Larson, B., Schelly, I., Batish, S. & Gibbs, H. K. Accelerated conversion of native prairie to cropland in Minnesota. Environ. Conserv. 1–8 https://doi.org/10.1017/S0376892918000437 (2019).

  21. 21.

    Wimberly, M. C. et al. Cropland expansion and grassland loss in the eastern Dakotas: New insights from a farm-level survey. Land Use Policy 63, 160–173 (2017).

    Google Scholar 

  22. 22.

    Boryan, C., Yang, Z., Mueller, R. & Craig, M. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 26, 341–358 (2011).

    Google Scholar 

  23. 23.

    Caro, T. Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship, and Other Surrogate Species (Island Press, 2010).

  24. 24.

    Yu, Z. & Lu, C. Historical cropland expansion and abandonment in the continental U.S. during 1850 to 2016. Glob. Ecol. Biogeogr. 27, 322–333 (2018).

    MathSciNet  Google Scholar 

  25. 25.

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Haan, N. L. & Landis, D. A. The importance of shifting disturbance regimes in monarch butterfly decline and recovery. Front. Ecol. Evol. 7, 191 (2019).

  27. 27.

    Lukens, L. et al. Monarch habitat in conservation grasslands. Front. Ecol. Evol. 8, 13 (2020).

  28. 28.

    Reynolds, R. E., Shaffer, T. L., Loesch, C. R. & Cox, R. R. The farm bill and duck production in the prairie pothole region: increasing the benefits. Wildl. Soc. Bull. 34, 963–974 (2006).

    Google Scholar 

  29. 29.

    Walker, J. et al. An integrated strategy for grassland easement acquisition in the Prairie Pothole Region, USA. J. Fish. Wildl. Manag. 4, 267–279 (2013).

    Google Scholar 

  30. 30.

    USDA, N. 2017 Census of Agriculture. https://www.nass.usda.gov/Publications/AgCensus/2017/index.php#full_report (2019).

  31. 31.

    USDA. 2015 National Resources Inventory: Summary Report. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd396218.pdf (2018).

  32. 32.

    Yang, L. et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).

    ADS  Google Scholar 

  33. 33.

    Estel, S. et al. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 163, 312–325 (2015).

    ADS  Google Scholar 

  34. 34.

    Yin, H. et al. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 210, 12–24 (2018).

    ADS  Google Scholar 

  35. 35.

    Yin, H. et al. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 246, 111873 (2020).

    ADS  Google Scholar 

  36. 36.

    Anderson, J. R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data (U.S. Government Printing Office, 1976).

  37. 37.

    Rogan, J. et al. Land-cover change monitoring with classification trees using landsat TM and ancillary data. Photogramm. Eng. Rem. Sensing 69, 793–804 (2003).

  38. 38.

    Johnson, D. M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 141, 116–128 (2014).

    ADS  Google Scholar 

  39. 39.

    Kukal, M. S. & Irmak, S. U.S. agro-climate in 20th century: growing degree days, first and last frost, growing season length, and impacts on crop yields. Sci. Rep. 8, 1–14 (2018).

    ADS  Google Scholar 

  40. 40.

    Ramankutty, N., Foley, J. A., Norman, J. & McSweeney, K. The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 11, 377–392 (2002).

    Google Scholar 

  41. 41.

    Lubowski, R. N. et al. Environmental Effects of Agricultural Land-use Change: The Role of Economics and Policy https://doi.org/10.22004/ag.econ.33591 (2006).

  42. 42.

    Hendricks, N. P. & Er, E. Changes in cropland area in the United States and the role of CRP. Food Policy 75, 15–23 (2018).

    Google Scholar 

  43. 43.

    Alonso, W. Location and land use. Toward a general theory of land rent. Locat. Land Use Gen. Theory Land Rent 204 (1964).

  44. 44.

    Wimberly, M. C., Narem, D. M., Bauman, P. J., Carlson, B. T. & Ahlering, M. A. Grassland connectivity in fragmented agricultural landscapes of the north-central United States. Biol. Conserv. 217, 121–130 (2018).

    Google Scholar 

  45. 45.

    Bennett, A. F. Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation (Iucn, 1999).

  46. 46.

    Helms, D. Readings in the History of the Soil Conservation Service, Washington, DC. Read. Hist. Soil Conserv. Serv. 60–73 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/about/history/?cid=nrcs143_021436 (1992).

  47. 47.

    Abubakar, M. S., Ahmad, D. & Akande, F. B. A review of farm tractor overturning accidents and safety. Pertanika J. Sci. Technol. 18, 377–385 (2010).

    Google Scholar 

  48. 48.

    Xie, Y., Lark, T. J., Brown, J. F. & Gibbs, H. K. Mapping irrigated cropland extent across the conterminous United States at 30 m resolution using a semi-automatic training approach on Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 155, 136–149 (2019).

    ADS  Google Scholar 

  49. 49.

    Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    ADS  CAS  PubMed  Google Scholar 

  50. 50.

    Oberhauser, K. & Guiney, M. Insects as flagship conservation species. Terr. Arthropod. Rev. 1, 111–123 (2009).

    Google Scholar 

  51. 51.

    Gustafsson, K. M., Agrawal, A. A., Lewenstein, B. V. & Wolf, S. A. The monarch butterfly through time and space: the social construction of an icon. BioScience 65, 612–622 (2015).

    Google Scholar 

  52. 52.

    Pleasants, J. Milkweed restoration in the Midwest for monarch butterfly recovery: estimates of milkweeds lost, milkweeds remaining and milkweeds that must be added to increase the monarch population. Insect Conserv. Divers. https://doi.org/10.1111/icad.12198 (2016).

  53. 53.

    Thogmartin, W. E. et al. Monarch butterfly population decline in North America: identifying the threatening processes. R. Soc. Open Sci. 4, 170760 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Stenoien, C. et al. Monarchs in decline: a collateral landscape-level effect of modern agriculture. Insect Sci. 25, 528–541 (2018).

    PubMed  Google Scholar 

  55. 55.

    Lipsey, M. K. et al. One step ahead of the plow: Using cropland conversion risk to guide Sprague’s Pipit conservation in the northern Great Plains. Biol. Conserv. 191, 739–749 (2015).

    Google Scholar 

  56. 56.

    Runge, C. A. et al. Unintended habitat loss on private land from grazing restrictions on public rangelands. J. Appl. Ecol. 56, 52–62 (2019).

  57. 57.

    Sylvester, K. M., Gutmann, M. P. & Brown, D. G. At the margins: agriculture, subsidies and the shifting fate of North America’s native grassland. Popul. Environ. 37, 362–390 (2016).

    CAS  PubMed  Google Scholar 

  58. 58.

    Claassen, R., Wade, T., Breneman, V., Williams, R. & Loesch, C. Preserving native grassland: Can Sodsaver reduce cropland conversion? J. Soil Water Conserv. 73, 67A–73A (2018).

    Google Scholar 

  59. 59.

    Lark, T. J. Protecting our prairies: Research and policy actions for conserving America’s grasslands. Land Use Policy 97, 104727 (2020).

    Google Scholar 

  60. 60.

    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).

    PubMed  Google Scholar 

  61. 61.

    Yesson, C. et al. How global is the global biodiversity information facility? PLoS ONE 2, e1124 (2007).

  62. 62.

    Hertel, T. W. The global supply and demand for agricultural land in 2050: a perfect storm in the making? Am. J. Agric. Econ. 93, 259–275 (2011).

    Google Scholar 

  63. 63.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    ADS  CAS  PubMed  Google Scholar 

  64. 64.

    Babcock, B. A. Extensive and intensive agricultural supply response. Annu Rev. Resour. Econ. 7, 333–348 (2015).

    Google Scholar 

  65. 65.

    Zhao, X., Van Der Mensbrugghe, D. & Tyner, W. E., Modeling land physically in CGE models: new insights on intensive and extensive margins, 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258363, Agricultural and Applied Economics Association. https://doi.org/10.22004/ag.econ.258363 (2017).

  66. 66.

    Barr, K. J., Babcock, B. A., Carriquiry, M. A., Nassar, A. M. & Harfuch, L. Agricultural Land Elasticities in the United States and Brazil. Appl. Econ. Perspect. Policy 33, 449–462 (2011).

    Google Scholar 

  67. 67.

    Molotoks, A. et al. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob. Change Biol. 24, 5895–5908 (2018).

    Google Scholar 

  68. 68.

    Boysen, L. R., Lucht, W. & Gerten, D. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Glob. Change Biol. 23, 4303–4317 (2017).

    ADS  Google Scholar 

  69. 69.

    Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 1–10 (2019).

    ADS  CAS  Google Scholar 

  70. 70.

    Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).

  71. 71.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed  Google Scholar 

  72. 72.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS  CAS  PubMed  Google Scholar 

  73. 73.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    ADS  CAS  Google Scholar 

  74. 74.

    Mourad, M. Recycling, recovering and preventing “food waste”: competing solutions for food systems sustainability in the United States and France. J. Clean. Prod. 126, 461–477 (2016).

    Google Scholar 

  75. 75.

    Parfitt, J., Barthel, M. & Macnaughton, S. Food waste within food supply chains: quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 365, 3065–3081 (2010).

    Google Scholar 

  76. 76.

    Shepon, A., Eshel, G., Noor, E. & Milo, R. The opportunity cost of animal based diets exceeds all food losses. Proc. Natl Acad. Sci. USA 115, 3804–3809 (2018).

    CAS  PubMed  Google Scholar 

  77. 77.

    Lobell, D. B., Cassman, K. G. & Field, C. B. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179 (2009).

    Google Scholar 

  78. 78.

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    ADS  CAS  PubMed  Google Scholar 

  79. 79.

    Howell, T. A. Enhancing water use efficiency in irrigated agriculture. Agron. J. 93, 281–289 (2001).

    Google Scholar 

  80. 80.

    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    ADS  CAS  PubMed  Google Scholar 

  81. 81.

    Kladivko, E. J. et al. Cover crops in the upper midwestern United States: Potential adoption and reduction of nitrate leaching in the Mississippi River Basin. J. Soil Water Conserv. 69, 279–291 (2014).

    Google Scholar 

  82. 82.

    Basche, A. D. & DeLonge, M. S. Comparing infiltration rates in soils managed with conventional and alternative farming methods: A meta-analysis. PLoS ONE 14, e0215702 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Chandrasoma, J. M., Christianson, R. D. & Christianson, L. E. Saturated buffers: What is their potential impact across the US Midwest? Agric. Environ. Lett. 4, https://doi.org/10.2134/ael2018.11.0059 (2019).

  84. 84.

    Schulte, L. A. et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proc. Natl Acad. Sci. USA 114, 11247–11252 (2017).

    CAS  PubMed  Google Scholar 

  85. 85.

    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257 (2019).

    CAS  PubMed  Google Scholar 

  86. 86.

    Basso, B., Shuai, G., Zhang, J. & Robertson, G. P. Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Sci. Rep. 9, 5774 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    LaCanne, C. E. & Lundgren, J. G. Regenerative agriculture: merging farming and natural resource conservation profitably. PeerJ 6, e4428 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Lark, T. J., Mueller, R. M., Johnson, D. M. & Gibbs, H. K. Measuring land-use and land-cover change using the U.S. department of agriculture’s cropland data layer: Cautions and recommendations. Int. J. Appl. Earth Obs. Geoinf. 62, 224–235 (2017).

    ADS  Google Scholar 

  90. 90.

    Lark, T. J. America’s Food- and Fuel-Scapes: Quantifying Agricultural Land-Use Change Across the United States (The University of Wisconsin, Madison, 2017).

  91. 91.

    Homer, C. et al. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).

    Google Scholar 

  92. 92.

    Kim, K. E. Adaptive majority filtering for contextual classification of remote sensing data. Int. J. Remote Sens. 17, 1083–1087 (1996).

    ADS  Google Scholar 

  93. 93.

    Tobler, W. R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46, 234–240 (1970).

    Google Scholar 

  94. 94.

    Miller, H. J. Tobler’s first law and spatial analysis. Ann. Assoc. Am. Geogr. 94, 284–289 (2004).

    Google Scholar 

  95. 95.

    Breiman, L. Random forests. Mach. Learn 45, 5–32 (2001).

    MATH  Google Scholar 

  96. 96.

    Jeong, J. H. et al. Random forests for global and regional crop yield predictions. PLoS ONE 11, e0156571 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    USDA - National Agricultural Statistics Service. Guide to NASS Surveys http://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/index.php. (2020).

  98. 98.

    Soil Survey Staff, N. R. C. S., United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for the United States. (2018).

  99. 99.

    Gesch, D. et al. The national elevation dataset. Photogramm. Eng. Remote Sens. 68, 5–32 (2002).

    Google Scholar 

  100. 100.

    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    ADS  Google Scholar 

  101. 101.

    Team, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2017).

  102. 102.

    Hydric Soils—Introduction | NRCS Soils. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/hydric/?cid=nrcs142p2_053961 (2020).

  103. 103.

    Cowardin, L. M., Shaffer, T. L. & Arnold, P. M. Evaluations of Duck Habitat and Estimation of Duck Population Sizes with a Remote-Sensing-Based System. https://apps.dtic.mil/docs/citations/ADA322572 (1995).

  104. 104.

    Jin, S. et al. Overall methodology design for the United States national land cover database 2016 products. Remote Sens. 11, 2971 (2019).

    ADS  Google Scholar 

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel