- 1.
Kiselev, A. et al. Active sites in heterogeneous ice nucleation-the example of k-rich feldspars. Science 355, 367–371 (2017).
- 2.
Friedman, B. et al. Ice nucleation and droplet formation by bare and coated soot particles. J. Geophys. Res.: Atmos. 116, D17203 (2011).
- 3.
Wilson, T. W. et al. A marine biogenic source of atmospheric ice-nucleating particles. Nature 525, 234–238 (2015).
- 4.
Bartels-Rausch, T. Chemistry: ten things we need to know about ice and snow. Nature 494, 27–29 (2013).
- 5.
Vonnegut, B. The nucleation of ice formation by silver iodide. J. Appl. Phys. 18, 593–595 (1947).
- 6.
Vonnegut, B. Variation with temperature of the nucleation rate of supercooled liquid tin and water drops. J. Colloid Interface Sci. 3, 563–569 (1948).
- 7.
Turnbull, D. & Vonnegut, B. Nucleation catalysis. Ind. Eng. Chem. 44, 1292–1298 (1952).
- 8.
Conrad, P., Ewing, G. E., Karlinsey, R. L. & Sadtchenko, V. Ice nucleation on BaF2(111). J. Chem. Phys. 122, 064709 (2005).
- 9.
Cardellach, M., Verdaguer, A., Santiso, J. & Fraxedas, J. Two-dimensional wetting: The role of atomic steps on the nucleation of thin water films on BaF2(111) at ambient conditions. J. Chem. Phys. 132, 234708 (2010).
- 10.
Kaya, S. et al. Highly compressed two-dimensional form of water at ambient conditions. Sci. Rep. 3, 1074 (2013).
- 11.
Pruppacher, H. & Klett, J. Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library (Springer, 1997).
- 12.
Zuberi, B., Bertram, A. K., Koop, T., Molina, L. T. & Molina, M. J. Heterogeneous freezing of aqueous particles induced by crystallized (NH4)SO4, ice, and letovicite. J. Phys. Chem. A 105, 6458–6464 (2001).
- 13.
Murray, B. J. et al. Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci. 3, 233–237 (2010).
- 14.
Knopf, D. A., Wang, B., Laskin, A., Moffet, R. C. & Gilles, M. K. Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City. Geophys. Res. Lett. 37, L11803 (2010).
- 15.
Hu, J., Xiao, X.-D., Ogletree, D. & Salmeron, M. Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science 268, 267–269 (1995).
- 16.
Xu, K., Cao, P. & Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329, 1188–1191 (2010).
- 17.
Michaelides, A. & Morgenstern, K. Ice nanoclusters at hydrophobic metal surfaces. Nat. Mater. 6, 597–601 (2007).
- 18.
Carrasco, J., Hodgson, A. & Michaelides, A. A molecular perspective of water at metal interfaces. Nat. Mater. 11, 667–674 (2012).
- 19.
Gerrard, N., Gattinoni, C., McBride, F., Michaelides, A. & Hodgson, A. Strain relief during ice growth on a hexagonal template. J. Am. Chem. Soc. 141, 8599–8607 (2019).
- 20.
Ma, R. et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 577, 60–63 (2020).
- 21.
Murray, B. J., O’Sullivan, D., Atkinson, J. D. & Webb, M. E. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 41, 6519–6554 (2012).
- 22.
Atkinson, J. D. et al. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 498, 355–358 (2013).
- 23.
Holden, M. A. et al. High-speed imaging of ice nucleation in water proves the existence of active sites. Sci. Adv. 5, eaav4316 (2019).
- 24.
Sosso, G. C. et al. Unravelling the origins of ice nucleation on organic crystals. Chem. Sci. 9, 8077–8088 (2018).
- 25.
Wu, S. et al. Heterogeneous ice nucleation correlates with bulk-like interfacial water. Sci. Adv. 5, eaat9825 (2019).
- 26.
Bai, G., Gao, D., Liu, Z., Zhou, X. & Wang, J. Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature 576, 437–441 (2019).
- 27.
Lukas, M. et al. Electrostatic interactions control the functionality of bacterial ice nucleators. J. Am. Chem. Soc. 142, 6842–6846 (2020).
- 28.
Fitzner, M., Sosso, G. C., Pietrucci, F., Pipolo, S. & Michaelides, A. Pre-critical fluctuations and what they disclose about heterogeneous crystal nucleation. Nat. Commun. 8, 2257 (2017).
- 29.
Bi, Y., Cao, B. & Li, T. Enhanced heterogeneous ice nucleation by special surface geometry. Nat. Commun. 8, 15372 (2017).
- 30.
Sosso, G. C. et al. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem. Rev. 116, 7078–7116 (2016).
- 31.
Hudait, A. & Molinero, V. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure. J. Am. Chem. Soc. 136, 8081–8093 (2014).
- 32.
Lupi, L., Peters, B. & Molinero, V. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism. J. Chem. Phys. 145, 211910 (2016).
- 33.
Qiu, Y., Hudait, A. & Molinero, V. How size and aggregation of ice-binding proteins control their ice nucleation efficiency. J. Am. Chem. Soc. 141, 7439–7452 (2019).
- 34.
Li, T., Donadio, D. & Galli, G. Ice nucleation at the nanoscale probes no man’s land of water. Nat. Commun. 4, 1887 (2013).
- 35.
Lupi, L. et al. Role of stacking disorder in ice nucleation. Nature 551, 218 (2017).
- 36.
Fitzner, M., Sosso, G. C., Cox, S. J. & Michaelides, A. Ice is born in low-mobility regions of supercooled liquid water. Proc. Natl Acad. Sci. USA 116, 2009–2014 (2019).
- 37.
Sanz, E. et al. Homogeneous ice nucleation at moderate supercooling from molecular simulation. J. Am. Chem. Soc. 135, 15008–15017 (2013).
- 38.
Espinosa, J. R. et al. Role of salt, pressure, and water activity on homogeneous ice nucleation. J. Phys. Chem. Lett. 8, 4486–4491 (2017).
- 39.
Lupi, L., Hudait, A. & Molinero, V. Heterogeneous nucleation of ice on carbon surfaces. J. Am. Chem. Soc. 136, 3156–3164 (2014).
- 40.
Lupi, L. & Molinero, V. Does hydrophilicity of carbon particles improve their ice nucleation ability? J. Phys. Chem. A 118, 7330–7337 (2014).
- 41.
Fitzner, M., Sosso, G. C., Cox, S. J. & Michaelides, A. The many faces of heterogeneous ice nucleation: Interplay between surface morphology and hydrophobicity. J. Am. Chem. Soc. 137, 13658–13669 (2015).
- 42.
Cabriolu, R. & Li, T. Ice nucleation on carbon surface supports the classical theory for heterogeneous nucleation. Phys. Rev. E 91, 052402 (2015).
- 43.
Cox, S. J., Kathmann, S. M., Slater, B. & Michaelides, A. Molecular simulations of heterogeneous ice nucleation. II. Peeling back the layers. J. Chem. Phys. 142, 184705 (2015).
- 44.
Cox, S. J., Kathmann, S. M., Slater, B. & Michaelides, A. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity. J. Chem. Phys. 142, 184704 (2015).
- 45.
Zielke, S. A., Bertram, A. K. & Patey, G. Simulations of ice nucleation by kaolinite (001) with rigid and flexible surfaces. J. Phys. Chem. B 120, 1726–1734 (2015).
- 46.
Sosso, G. C., Tribello, G. A., Zen, A., Pedevilla, P. & Michaelides, A. Ice formation on kaolinite: Insights from molecular dynamics simulations. J. Chem. Phys. 145, 211927 (2016).
- 47.
Pedevilla, P., Fitzner, M. & Michaelides, A. What makes a good descriptor for heterogeneous ice nucleation on oh-patterned surfaces. Phys. Rev. B 96, 115441 (2017).
- 48.
Glatz, B. & Sarupria, S. The surface charge distribution affects the ice nucleating efficiency of silver iodide. J. Chem. Phys. 145, 211924 (2016).
- 49.
Metya, A. K., Singh, J. K. & Müller-Plathe, F. Ice nucleation on nanotextured surfaces: the influence of surface fraction, pillar height and wetting states. Phys. Chem. Chem. Phys. 18, 26796–26806 (2016).
- 50.
Molinero, V. & Moore, E. B. Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113, 4008–4016 (2009).
- 51.
Moore, E. B. & Molinero, V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479, 506–508 (2011).
- 52.
Haji-Akbari, A. & Debenedetti, P. G. Direct calculation of ice homogeneous nucleation rate for a molecular model of water. Proc. Natl Acad. Sci. USA 112, 10582–10588 (2015).
- 53.
Sosso, G. C., Li, T., Donadio, D., Tribello, G. A. & Michaelides, A. Microscopic mechanism and kinetics of ice formation at complex interfaces: Zooming in on kaolinite. J. Phys. Chem. Lett. 7, 2350–2355 (2016).
- 54.
Zielke, S. A., Bertram, A. K. & Patey, G. N. A molecular mechanism of ice nucleation on model AgI surfaces. J. Phys. Chem. B 119, 9049–9055 (2015).
- 55.
Meng, S., Wang, E. & Gao, S. A molecular picture of hydrophilic and hydrophobic interactions from ab initio density functional theory calculations. J. Chem. Phys. 119, 7617–7620 (2003).
- 56.
Qiu, Y. et al. Ice nucleation efficiency of hydroxylated organic surfaces is controlled by their structural fluctuations and mismatch to ice. J. Am. Chem. Soc. 139, 3052–3064 (2017).
- 57.
Bi, Y., Cabriolu, R. & Li, T. Heterogeneous ice nucleation controlled by the coupling of surface crystallinity and surface hydrophilicity. J. Phys. Chem. C. 120, 1507–1514 (2016).
- 58.
Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. in Advances in Neural Information Processing Systems, 4765–4774 (2017).
- 59.
Hussain, H. et al. Structure of a model TiO2 photocatalytic interface. Nat. Mater. 16, 461 (2017).
- 60.
Li, T., Donadio, D., Russo, G. & Galli, G. Homogeneous ice nucleation from supercooled water. Phys. Chem. Chem. Phys. 13, 19807–19813 (2011).
- 61.
Wei, X., Miranda, P. B., Zhang, C. & Shen, Y. Sum-frequency spectroscopic studies of ice interfaces. Phys. Rev. B 66, 085401 (2002).
- 62.
Pandey, R. et al. Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci. Adv. 2, e1501630 (2016).
- 63.
Sleutel, M., Lutsko, J., Van Driessche, A. E. S., Durán-Olivencia, M. A. & Maes, D. Observing classical nucleation theory at work by monitoring phase transitions with molecular precision. Nat. Commun. 5, 5598 (2014).
- 64.
Maier, S., Lechner, B. A., Somorjai, G. A. & Salmeron, M. Growth and structure of the first layers of ice on Ru(0001) and Pt(111). J. Am. Chem. Soc. 138, 3145–3151 (2016).
- 65.
Pedevilla, P., Fitzner, M., Sosso, G. C. & Michaelides, A. Heterogeneous seeded molecular dynamics as a tool to probe the ice nucleating ability of crystalline surfaces. J. Chem. Phys. 149, 072327 (2018).
- 66.
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
- 67.
Reshef, D. N. et al. Detecting novel associations in large data sets. Science 334, 1518–1524 (2011).
- 68.
Chen, T. & Guestrin, C. Xgboost: a scalable tree boosting system. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794 (ACM, 2016).
- 69.
Ben-Hur, A., Horn, D., Siegelmann, H. T. & Vapnik, V. Support vector clustering. J. Mach. Learn. Res. 2, 125–137 (2001).
- 70.
Bergstra, J. S., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms for hyper-parameter optimization. in Advances in Neural Information Processing Systems, 2546–2554 (2011).
- 71.
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
Comments
Something to say?
Log in or Sign up for free