Welcome to the IKCEST
PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade
  1. 1.

    Chen, DanielS. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Gardner, A. & Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol. 37, 855–865 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Durai, V. & Murphy, KennethM. Functions of murine dendritic cells. Immunity 45, 719–736 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  6. 6.

    Salmon, H. et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Roberts, E. W. et al. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324–336 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Scarlett, U. K. et al. Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J. Exp. Med. 209, 495–506 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Norian, L. A. et al. Tumor-infiltrating regulatory dendritic cells inhibit CD8 T cell function via L-arginine metabolism. Cancer Res. 69, 3086 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Strauss, L. et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Science. Immunology 5, eaay1863 (2020).

    CAS  Google Scholar 

  11. 11.

    Brahmer, J. R. et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Topalian, S. L. et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  15. 15.

    Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  16. 16.

    Nguyen, L. T. & Ohashi, P. S. Clinical blockade of PD1 and LAG3 — potential mechanisms of action. Nat. Rev. Immunol. 15, 45–56 (2014).

    Article  CAS  Google Scholar 

  17. 17.

    Garber, K. Predictive biomarkers for checkpoints, first tests approved. Nat. Biotechnol. 33, 1217–1218 (2015).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Sunshine, J. & Taube, J. M. PD-1/PD-L1 inhibitors. Curr. Opin. Pharmacol. 23, 32–38 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Tang, H. et al. PD-L1 on host cells is essential for PD-L1 blockade–mediated tumor regression. J. Clin. Invest. 128, 580–588 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Kleinovink, J. W. et al. PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy. OncoImmunology 6, e1294299 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Lau, J. et al. Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat. Commun. 8, 14572 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Juneja, V. R. et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 214, 895–904 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Noguchi, T. et al. Temporally distinct PD-L1 expression by tumor and host cells contributes to immune escape. Cancer Immunol. Res. 5, 106–117 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Rashidian, M. et al. Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Proc. Natl Acad. Sci. USA 116, 16971–16980 (2019).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Antonios, J. P. et al. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro Oncol. 19, 796–807 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Zhang, X. et al. Distinct contribution of PD-L1 suppression by spatial expression of PD-L1 on tumor and non-tumor cells. Cell. Mol. Immunol. 16, 392–400 (2019).

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Lin, H. et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade–mediated tumor regression. J. Clin. Invest. 128, 805–815 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Mayer, C. T. et al. Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow. Blood 124, 3081–3091 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Sun, C., Mezzadra, R. & Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 48, 434–452 (2018).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Eisenbarth, S. C. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19, 89–103 (2019).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Tang, H. et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 29, 285–296 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  33. 33.

    Gato-Cañas, M. et al. PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep. 20, 1818–1829 (2017).

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv324 (2016).

    Article  CAS  Google Scholar 

  35. 35.

    Munn, D. H. The host protecting the tumor from the host — targeting PD‑L1 expressed by host cells. J. Clin. Invest. 128, 570–572 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Curiel, T. J. et al. Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity. Nat. Med. 9, 562–567 (2003).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Chen, L. et al. B7-H1 maintains the polyclonal T cell response by protecting dendritic cells from cytotoxic T lymphocyte destruction. Proc. Natl Acad. Sci. USA 115, 3126–3131 (2018).

    PubMed  Article  Google Scholar 

  38. 38.

    Zhao, Y. et al. Antigen-presenting cell-intrinsic PD-1 neutralizes PD-L1 in cis to attenuate PD-1 signaling in T cells. Cell Rep. 24, 379–390.e6 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Chaudhri, A. et al. PD-L1 binds to B7-1 only In Cis on the same cell surface.Cancer Immunol. Res. 6, 921–929 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Sugiura, D. et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science 364, 558–566 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  41. 41.

    Zhao, Y. et al. PD-L1:CD80 Cis-heterodimer triggers the co-stimulatory receptor CD28 while repressing the inhibitory PD-1 and CTLA-4 pathways. Immunity 51, 1059–1073.e9 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Oh, S. A. et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 1, 681–691 (2020).

    Article  Google Scholar 

  43. 43.

    Mayoux, M. et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci. Transl. Med. 12, eaav7431 (2020).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  45. 45.

    Ruhland, M. K. et al. Visualizing synaptic transfer of tumor antigens among dendritic cells. Cancer Cell 37, 786–799.e5 (2020).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Crespo, J., Sun, H., Welling, T. H., Tian, Z. & Zou, W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 25, 214–221 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    PubMed  Article  Google Scholar 

  48. 48.

    Callahan, M. K. & Wolchok, J. D. Recruit or reboot? How does anti-PD-1 therapy change tumor-infiltrating lymphocytes? Cancer Cell 36, 215–217 (2019).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Chamoto, K. et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc. Natl Acad. Sci. USA 114, E761–70 (2017).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Fransen, M. F. et al. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 3, e124507 (2018).

    PubMed Central  Article  Google Scholar 

  53. 53.

    Zheng, W. et al. Combination of radiotherapy and vaccination overcomes checkpoint blockade resistance. Oncotarget 7, 43039–43051 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

Original Text (This is the original text for your reference.)

  1. 1.

    Chen, DanielS. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Gardner, A. & Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol. 37, 855–865 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Durai, V. & Murphy, KennethM. Functions of murine dendritic cells. Immunity 45, 719–736 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  6. 6.

    Salmon, H. et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Roberts, E. W. et al. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324–336 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Scarlett, U. K. et al. Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J. Exp. Med. 209, 495–506 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Norian, L. A. et al. Tumor-infiltrating regulatory dendritic cells inhibit CD8 T cell function via L-arginine metabolism. Cancer Res. 69, 3086 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Strauss, L. et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Science. Immunology 5, eaay1863 (2020).

    CAS  Google Scholar 

  11. 11.

    Brahmer, J. R. et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Topalian, S. L. et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  15. 15.

    Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  16. 16.

    Nguyen, L. T. & Ohashi, P. S. Clinical blockade of PD1 and LAG3 — potential mechanisms of action. Nat. Rev. Immunol. 15, 45–56 (2014).

    Article  CAS  Google Scholar 

  17. 17.

    Garber, K. Predictive biomarkers for checkpoints, first tests approved. Nat. Biotechnol. 33, 1217–1218 (2015).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Sunshine, J. & Taube, J. M. PD-1/PD-L1 inhibitors. Curr. Opin. Pharmacol. 23, 32–38 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Tang, H. et al. PD-L1 on host cells is essential for PD-L1 blockade–mediated tumor regression. J. Clin. Invest. 128, 580–588 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Kleinovink, J. W. et al. PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy. OncoImmunology 6, e1294299 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Lau, J. et al. Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat. Commun. 8, 14572 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Juneja, V. R. et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 214, 895–904 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Noguchi, T. et al. Temporally distinct PD-L1 expression by tumor and host cells contributes to immune escape. Cancer Immunol. Res. 5, 106–117 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Rashidian, M. et al. Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Proc. Natl Acad. Sci. USA 116, 16971–16980 (2019).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Antonios, J. P. et al. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro Oncol. 19, 796–807 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Zhang, X. et al. Distinct contribution of PD-L1 suppression by spatial expression of PD-L1 on tumor and non-tumor cells. Cell. Mol. Immunol. 16, 392–400 (2019).

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Lin, H. et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade–mediated tumor regression. J. Clin. Invest. 128, 805–815 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Mayer, C. T. et al. Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow. Blood 124, 3081–3091 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Sun, C., Mezzadra, R. & Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 48, 434–452 (2018).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Eisenbarth, S. C. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19, 89–103 (2019).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Tang, H. et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 29, 285–296 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  33. 33.

    Gato-Cañas, M. et al. PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep. 20, 1818–1829 (2017).

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv324 (2016).

    Article  CAS  Google Scholar 

  35. 35.

    Munn, D. H. The host protecting the tumor from the host — targeting PD‑L1 expressed by host cells. J. Clin. Invest. 128, 570–572 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Curiel, T. J. et al. Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity. Nat. Med. 9, 562–567 (2003).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Chen, L. et al. B7-H1 maintains the polyclonal T cell response by protecting dendritic cells from cytotoxic T lymphocyte destruction. Proc. Natl Acad. Sci. USA 115, 3126–3131 (2018).

    PubMed  Article  Google Scholar 

  38. 38.

    Zhao, Y. et al. Antigen-presenting cell-intrinsic PD-1 neutralizes PD-L1 in cis to attenuate PD-1 signaling in T cells. Cell Rep. 24, 379–390.e6 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Chaudhri, A. et al. PD-L1 binds to B7-1 only In Cis on the same cell surface.Cancer Immunol. Res. 6, 921–929 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Sugiura, D. et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science 364, 558–566 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  41. 41.

    Zhao, Y. et al. PD-L1:CD80 Cis-heterodimer triggers the co-stimulatory receptor CD28 while repressing the inhibitory PD-1 and CTLA-4 pathways. Immunity 51, 1059–1073.e9 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Oh, S. A. et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 1, 681–691 (2020).

    Article  Google Scholar 

  43. 43.

    Mayoux, M. et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci. Transl. Med. 12, eaav7431 (2020).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  45. 45.

    Ruhland, M. K. et al. Visualizing synaptic transfer of tumor antigens among dendritic cells. Cancer Cell 37, 786–799.e5 (2020).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Crespo, J., Sun, H., Welling, T. H., Tian, Z. & Zou, W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 25, 214–221 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    PubMed  Article  Google Scholar 

  48. 48.

    Callahan, M. K. & Wolchok, J. D. Recruit or reboot? How does anti-PD-1 therapy change tumor-infiltrating lymphocytes? Cancer Cell 36, 215–217 (2019).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Chamoto, K. et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc. Natl Acad. Sci. USA 114, E761–70 (2017).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Fransen, M. F. et al. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 3, e124507 (2018).

    PubMed Central  Article  Google Scholar 

  53. 53.

    Zheng, W. et al. Combination of radiotherapy and vaccination overcomes checkpoint blockade resistance. Oncotarget 7, 43039–43051 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel