- 1.
Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).
- 2.
Urban, A., Seo, D.-H. & Ceder, G. Computational understanding of Li-ion batteries. npj Comput. Mater. 2, 16002 (2016).
- 3.
Islam, M. S. & Fisher, C. A. J. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43, 185–204 (2014).
- 4.
Tabor, D. P. et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).
- 5.
de Pablo, J. J. et al. New frontiers for the materials genome initiative. Npj Comput. Mater. 5, 41 (2019).
- 6.
Gomes, C. P., Selman, B. & Gregoire, J. M. Artificial intelligence for materials discovery. MRS Bull. 44, 538–544 (2019).
- 7.
Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018). This seminal review highlights theoretical background, practical realizationand limitations of a reversible and stable anionic redox activity in metal-ion battery cathodes.
- 8.
Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).
- 9.
Rouxel, J. Anion–cation redox competition and the formation of new compounds in highly covalent systems. Chem. Eur. J. 2, 1053–1059 (1996).
- 10.
Xie, Y., Saubanere, M. & Doublet, M.-L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10, 266–274 (2017).
- 11.
Ben Yahia, M., Vergnet, J., Saubanère, M. & Doublet, M.-L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019). This work provides a theoretical framework for the unified picture of anionic redox reactions in A-rich transition metal oxides.
- 12.
Furuseth, S., Brattås, L., Kjekshus, A., Andresen, A. F. & Fischer, P. On the Crystal Structures of TiS3, ZrS3, ZrSe3, ZrTe3, HfS3, and HfSe3. Acta Chem. Scand. 29a, 623–631 (1975).
- 13.
Brostigen, G. & Kjekshus, A. Redetermined crystal structure of FeS2 (pyrite). Acta Chem. Scand. 23, 2186–2188 (1969).
- 14.
Sasaki, S. et al. A new chemistry route to synthesize layered materials based on the redox reactivity of anionic chalcogen dimers. Angew. Chem. Int. Ed. 57, 13618–13623 (2018).
- 15.
McCalla, E. et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015). This work demonstrated a cooperative distortion of the oxygen framework associated with the anionic redox.
- 16.
Pearce, P. E. et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nat. Mater. 16, 580–587 (2017).
- 17.
Vergnet, J., Saubanere, M., Doublet, M.-L. & Tarascon, J.-M. The structural stability of P2-layered na-based electrodes during anionic redox. Joule 4, 1–15 (2020).
- 18.
Saubanere, M., McCalla, E., Tarascon, J.-M. & Doublet, M.-L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9, 984–991 (2016).
- 19.
Hu, Q. et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles. Nature 534, 241–244 (2016).
- 20.
Streltsov, S. S., Shorikov, A. O., Skornyakov, S. L., Poteryaev, A. I. & Khomskii, D. I. Unexpected 3+ valence of iron in FeO2, a geologically important material lying “in between” oxides and peroxides. Sci. Rep. 7, 13005 (2017).
- 21.
Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016). This work uncovered the role of non-bonding oxygen orbitals in the extra capacity delivered by anionic redox.
- 22.
Maitra, U. et al. Oxygen redox chemistry without excess alkali metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10, 288–295 (2018).
- 23.
Kou, X.-j, Ke, H., Zhu, C.-b & Rolfe, P. First-principles study of the chemical bonding and conduction behavior of LiFePO4. Chem. Phys. 446, 1–6 (2015).
- 24.
Kinyanjui, M. K. et al. Origin of valence and core excitations in LiFePO4 and FePO4. J. Phys. Condens. Matter 22, 275501 (2010).
- 25.
Tereshchenko, I. V. et al. The role of semilabile oxygen atoms for intercalation chemistry of the metal-ion battery polyanion cathodes. J. Am. Chem. Soc. 140, 3994–4003 (2018).
- 26.
Karakulina, O. M. et al. Antisite disorder and bond valence compensation in Li2FePO4F cathode for Li-ion batteries. Chem. Mater. 28, 7578–7581 (2016).
- 27.
Masese, T. et al. Crystal structural changes and charge compensation mechanism during two lithium extraction/insertion between Li2FeSiO4 and FeSiO4. J. Phys. Chem. C. 119, 10206–10211 (2015).
- 28.
Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).
- 29.
Yin, W. et al. Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nat. Commun. 11, 1252 (2020).
- 30.
Pecquenard, B. et al. Structure of hydrated tungsten peroxides [WO2(O2)H2O].nH2O. Chem. Mater. 10, 1882–1888 (1998).
- 31.
Famprikis, T., Canepa, P., Dawson, J. A., Saiful Islam, M. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).
- 32.
Meutzner, F. et al. Computational analysis and identification of battery materials. Phys. Sci. Rev. 4, 20180044 (2018). This review demonstrates the geometric and crystal-chemical approaches and methodologies to identify perspective electrochemical energy storage materials.
- 33.
Adams, S. Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Cryst. B 57, 278–287 (2001).
- 34.
Xiao, R., Li, H. & Chen, L. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci. Rep. 5, 14227 (2015).
- 35.
Eremin, R. A., Kabanova, N. A., Morkhova, Y. A., Golov, A. A. & Blatov, V. A. High-throughput search for potential potassium ion conductors: a combination of geometrical-topological and density functional theory approaches. Solid State Ion. 326, 188–199 (2018).
- 36.
Fedotov, S. S. et al. Crystallochemical tools in the search for cathode materials of rechargeable Na-ion batteries and analysis of their transport properties. Solid State Ion. 314, 129–140 (2018).
- 37.
Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015). This work reveals a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials.
- 38.
Krauskopf, T. et al. Comparing the Descriptors for Investigating the Influence of Lattice Dynamics on Ionic Transport Using the Superionic Conductor Na3PS4–xSex. J. Am. Chem. Soc. 140, 14464–14473 (2018).
- 39.
Saha, S. et al. Structural polymorphism in Na4Zn(PO4)2 driven by rotational order−disorder transitions and the impact of heterovalent substitutions on Na-Ion conductivity. Inorg. Chem. 59, 6528–6540 (2020).
- 40.
Jansen, M. Volume effect or paddle-wheel mechanism-fast alkali-metal ionic conduction in solids with rotationally disordered complex anions. Angew. Chem. lnt. Ed. 30, 1547–1558 (1991).
- 41.
Zhang, Z., Roy, P.-N., Li, H., Avdeev, M. & Nazar, L. F. Coupled cation–anion dynamics enhances cation mobility in room-temperature superionic solid-state electrolytes. J. Am. Chem. Soc. 141, 19360–19372 (2019).
- 42.
Smith, J. G. & Siegel, D. J. Low-temperature paddlewheel effect in glassy solid electrolytes. Nat. Commun. 11, 1483 (2020).
- 43.
Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).
- 44.
Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).
- 45.
Kanno, R. & Murayama, M. Lithium ionic conductor Thio-LISICON: the Li2S - GeS2 -P2S5 system. J. Electrochem. Soc. 148, A742 (2001).
- 46.
Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). This work demonstrated that high ionic conductivity exceeding that of liquid organic electrolytes can be achieved in non-oxide inorganic solid.
- 47.
Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).
- 48.
Adeli, P. et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem., Int. Ed. 131, 8773–8778 (2019).
- 49.
Liu, Z. et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 135, 975–978 (2013).
- 50.
Li, X. et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ. Sci. 13, 1429–1461 (2020).
- 51.
Pimenta, V. et al. Synthesis of Li-Rich NMC: a comprehensive study. Chem. Mater. 29, 9923–9936 (2017).
- 52.
Kang, K. & Ceder, G. Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 74, 094105 (2006).
- 53.
Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).
- 54.
Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).
- 55.
Fedotov, S. et al. Crystal structure and Li-ion transport in Li2CoPO4F high-voltage cathode material for Li-ion batteries. J. Phys. Chem. C. 121, 3194–3202 (2017).
- 56.
Yamakawa, S., Yamasaki, H., Koyama, T. & Asahi, R. Numerical study of Li diffusion in polycrystalline LiCoO2. J. Power Sources 223, 199–205 (2013).
- 57.
Moriwake, H. et al. First-principles calculations of lithium-ion migration at a coherent grain boundary in a cathode material LiCoO2. Adv. Mater. 25, 618–622 (2013).
- 58.
Gao, Y. et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors. Chem. Rev. 120, 5954–6008 (2020).
- 59.
Casas-Cabanas, M., Reynaud, M., Rikarte, J., Horbach, P. & Rodriguez-Carvajal, J. FAULTS: a program for refinement of structures with extended defects. J. Appl. Crystallogr. 49, 2259–2269 (2016). This work introduces a tool for rigorous treatment of powder diffraction patterns from faulted structures.
- 60.
Shunmugasundaram, R., Arumugam, R. S. & Dahn, J. R. A study of stacking faults and superlattice ordering in some li-rich layered transition metal oxide positive electrode materials. J. Electrochem. Soc. 163, A1394–A1400 (2016).
- 61.
Serrano-Sevillano, J. et al. Enhanced electrochemical performance of Li-rich cathode materials through microstructural control. Phys. Chem. Chem. Phys. 20, 23112–23122 (2018).
- 62.
Mancini, A. & Malavasi, L. Recent advances in the application of total scattering methods to functional materials. Chem. Commun. 51, 16592–16604 (2015).
- 63.
Ji, H. et al. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries. Nat. Commun. 10, 592 (2019).
- 64.
Pecher, O., Carretero-González, J., Griffith, K. J. & Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017).
- 65.
Hadermann, J. & Abakumov, A. M. Structure solution and refinement of metal-ion battery cathode materials using electron diffraction tomography. Acta Cryst. B 75, 485–494 (2019). This review demonstrates capabilities of quantitative electron crystallography in structural characterization of battery materials.
- 66.
Karakulina, O. M., Demortière, A., Dachraoui, W., Abakumov, A. M. & Hadermann, J. In situ electron diffraction tomography using a liquid-electrochemical transmission electron microscopy cell for crystal structure determination of cathode materials for li-ion batteries. Nano Lett. 18, 6286–6291 (2018).
- 67.
Palatinus, L., Petříček, V. & Antunes Corrêa, C. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Cryst. A 71, 235–244 (2015).
- 68.
Mugnaioli, E. & Gorelik, T. E. Structure analysis of materials at the order–disorder borderline using three-dimensional electron diffraction. Acta Cryst. B 75, 550–563 (2019).
- 69.
Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015).
- 70.
Chung, S.-Y., Choi, S.-Y., Yamamoto, T. & Ikuhara, Y. Atomic-scale visualization of antisite defects in LiFePO4. Phys. Rev. Lett. 100, 125502 (2008).
- 71.
Gu, L. et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J. Am. Chem. Soc. 133, 4661–4663 (2011).
- 72.
Lozano, J. G., Martinez, G. T., Jin, L., Nellist, P. D. & Bruce, P. G. Low-Dose aberration-free imaging of Li-rich cathode materials at various states of charge using electron ptychography. Nano Lett. 18, 6850–6855 (2018).
- 73.
Yücelen, E., Lazić, I. & Bosch, E. G. T. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci. Rep. 8, 2676 (2018).
- 74.
Van Aert, S. et al. Advanced electron crystallography through model based imaging. IUCrJ 3, 71–83 (2016).
- 75.
Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).
- 76.
Foix, D., Sathiya, M., McCalla, E., Tarascon, J.-M. & Gonbeau, D. X-ray photoemission spectroscopy study of cationic and anionic redox processes in high-capacity Li-ion battery layered-oxide electrodes. J. Phys. Chem. C. 120, 862–874 (2016).
- 77.
Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).
- 78.
Yang, W. & Devereaux, T. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sour. 389, 188–197 (2018).
- 79.
Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).
- 80.
Chen, H. et al. Carbonophosphates: a new family of cathode materials for li-ion batteries identified computationally. Chem. Mater. 24, 2009–2016 (2012).
- 81.
Hautier, G. et al. Designing multielectron lithium-ion phosphate cathodes by mixing transition metals. Chem. Mater. 25, 2064–2074 (2013).
- 82.
Panin, R. V. et al. Pyrophosphates AMoP2O7 (A = Li and Na): Synthesis, structure and electrochemical properties. Mater. Res. Bull. 106, 170–175 (2018).
- 83.
Jain, A. et al. A computational investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as cathodes for li ion batteries. J. Electrochem. Soc. 159, A622–A633 (2012).
- 84.
Hautier, G. et al. Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem. Mater. 23, 3495–3508 (2011).
- 85.
Herklotz, M. et al. Electrochemical oxidation of trivalent chromium in a phosphate matrix: Li3Cr2(PO4)3 as cathode material for lithium ion batteries. Electrochim. Acta 139, 356–364 (2014).
- 86.
Perez, A. J. et al. Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4. Nat. Energy 2, 954–962 (2017).
- 87.
Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).
- 88.
House, R. A. et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy Environ. Sci. 11, 926–932 (2018).
- 89.
House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).
- 90.
Ji, H. et al. Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat. Energy 5, 213–221 (2020).
- 91.
Saha, S. et al. Exploring the bottlenecks of anionic redox in Li-rich layered sulfides. Nat. Energy 4, 977–987 (2019).
- 92.
Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and applications of machine learning in solid state materials science. npj Comput. Mater. 5, 83 (2019).
- 93.
Winter, S. M. et al. Models and materials for generalized Kitaev magnetism. J. Phys.: Condens. Matter 29, 493002 (2017).
- 94.
Alekseeva, A. M. et al. New superconductor LixFe1+δSe (x ≤ 0.07, Tc up to 44 K) by an electrochemical route. Sci. Rep. 6, 25624 (2016).
- 95.
Lu, Z. et al. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 5, 4345 (2014).
- 96.
Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).
- 97.
Gutierrez, A., Benedek, N. A. & Manthiram, A. Crystal-chemical guide for understanding redox energy variations of M2+/3+ couples in polyanion cathodes for lithium-ion batteries. Chem. Mater. 25, 4010–4016 (2013). This work provides crystal-chemical rationale behind the redox potentials in polyanion cathodes.
- 98.
Fedotov, S. S. et al. Titanium-based potassium-ion battery positive electrode with extraordinarily high redox potential. Nat. Commun. 11, 1484 (2020).
- 99.
Adams, S. From bond valence maps to energy landscapes for mobile ions in ion-conducting solids. Solid State Ion. 177, 1625–1630 (2006).
- 100.
Adams, S. & Rao, R. P. Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. Phys. Chem. Chem. Phys. 11, 3210 (2009).
User Center
My Training Class
Feedback








Comments
Something to say?
Log in or Sign up for free