Welcome to the IKCEST
Solid state chemistry for developing better metal-ion batteries
  1. 1.

    Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Urban, A., Seo, D.-H. & Ceder, G. Computational understanding of Li-ion batteries. npj Comput. Mater. 2, 16002 (2016).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Islam, M. S. & Fisher, C. A. J. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43, 185–204 (2014).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Tabor, D. P. et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    de Pablo, J. J. et al. New frontiers for the materials genome initiative. Npj Comput. Mater. 5, 41 (2019).

    ADS  Article  Google Scholar 

  6. 6.

    Gomes, C. P., Selman, B. & Gregoire, J. M. Artificial intelligence for materials discovery. MRS Bull. 44, 538–544 (2019).

    Article  Google Scholar 

  7. 7.

    Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018). This seminal review highlights theoretical background, practical realizationand limitations of a reversible and stable anionic redox activity in metal-ion battery cathodes.

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    ADS  CAS  Article  Google Scholar 

  9. 9.

    Rouxel, J. Anion–cation redox competition and the formation of new compounds in highly covalent systems. Chem. Eur. J. 2, 1053–1059 (1996).

    CAS  Article  Google Scholar 

  10. 10.

    Xie, Y., Saubanere, M. & Doublet, M.-L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10, 266–274 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Ben Yahia, M., Vergnet, J., Saubanère, M. & Doublet, M.-L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019). This work provides a theoretical framework for the unified picture of anionic redox reactions in A-rich transition metal oxides.

    ADS  PubMed  Article  CAS  Google Scholar 

  12. 12.

    Furuseth, S., Brattås, L., Kjekshus, A., Andresen, A. F. & Fischer, P. On the Crystal Structures of TiS3, ZrS3, ZrSe3, ZrTe3, HfS3, and HfSe3. Acta Chem. Scand. 29a, 623–631 (1975).

    Article  Google Scholar 

  13. 13.

    Brostigen, G. & Kjekshus, A. Redetermined crystal structure of FeS2 (pyrite). Acta Chem. Scand. 23, 2186–2188 (1969).

    CAS  Article  Google Scholar 

  14. 14.

    Sasaki, S. et al. A new chemistry route to synthesize layered materials based on the redox reactivity of anionic chalcogen dimers. Angew. Chem. Int. Ed. 57, 13618–13623 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    McCalla, E. et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015). This work demonstrated a cooperative distortion of the oxygen framework associated with the anionic redox.

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Pearce, P. E. et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nat. Mater. 16, 580–587 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  17. 17.

    Vergnet, J., Saubanere, M., Doublet, M.-L. & Tarascon, J.-M. The structural stability of P2-layered na-based electrodes during anionic redox. Joule 4, 1–15 (2020).

    Article  CAS  Google Scholar 

  18. 18.

    Saubanere, M., McCalla, E., Tarascon, J.-M. & Doublet, M.-L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9, 984–991 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Hu, Q. et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles. Nature 534, 241–244 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Streltsov, S. S., Shorikov, A. O., Skornyakov, S. L., Poteryaev, A. I. & Khomskii, D. I. Unexpected 3+ valence of iron in FeO2, a geologically important material lying “in between” oxides and peroxides. Sci. Rep. 7, 13005 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016). This work uncovered the role of non-bonding oxygen orbitals in the extra capacity delivered by anionic redox.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Maitra, U. et al. Oxygen redox chemistry without excess alkali metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10, 288–295 (2018).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Kou, X.-j, Ke, H., Zhu, C.-b & Rolfe, P. First-principles study of the chemical bonding and conduction behavior of LiFePO4. Chem. Phys. 446, 1–6 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Kinyanjui, M. K. et al. Origin of valence and core excitations in LiFePO4 and FePO4. J. Phys. Condens. Matter 22, 275501 (2010).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Tereshchenko, I. V. et al. The role of semilabile oxygen atoms for intercalation chemistry of the metal-ion battery polyanion cathodes. J. Am. Chem. Soc. 140, 3994–4003 (2018).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Karakulina, O. M. et al. Antisite disorder and bond valence compensation in Li2FePO4F cathode for Li-ion batteries. Chem. Mater. 28, 7578–7581 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Masese, T. et al. Crystal structural changes and charge compensation mechanism during two lithium extraction/insertion between Li2FeSiO4 and FeSiO4. J. Phys. Chem. C. 119, 10206–10211 (2015).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Yin, W. et al. Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nat. Commun. 11, 1252 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Pecquenard, B. et al. Structure of hydrated tungsten peroxides [WO2(O2)H2O].nH2O. Chem. Mater. 10, 1882–1888 (1998).

    CAS  Article  Google Scholar 

  31. 31.

    Famprikis, T., Canepa, P., Dawson, J. A., Saiful Islam, M. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  32. 32.

    Meutzner, F. et al. Computational analysis and identification of battery materials. Phys. Sci. Rev. 4, 20180044 (2018). This review demonstrates the geometric and crystal-chemical approaches and methodologies to identify perspective electrochemical energy storage materials.

  33. 33.

    Adams, S. Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Cryst. B 57, 278–287 (2001).

    CAS  Article  Google Scholar 

  34. 34.

    Xiao, R., Li, H. & Chen, L. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci. Rep. 5, 14227 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Eremin, R. A., Kabanova, N. A., Morkhova, Y. A., Golov, A. A. & Blatov, V. A. High-throughput search for potential potassium ion conductors: a combination of geometrical-topological and density functional theory approaches. Solid State Ion. 326, 188–199 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Fedotov, S. S. et al. Crystallochemical tools in the search for cathode materials of rechargeable Na-ion batteries and analysis of their transport properties. Solid State Ion. 314, 129–140 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015). This work reveals a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Krauskopf, T. et al. Comparing the Descriptors for Investigating the Influence of Lattice Dynamics on Ionic Transport Using the Superionic Conductor Na3PS4–xSex. J. Am. Chem. Soc. 140, 14464–14473 (2018).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Saha, S. et al. Structural polymorphism in Na4Zn(PO4)2 driven by rotational order−disorder transitions and the impact of heterovalent substitutions on Na-Ion conductivity. Inorg. Chem. 59, 6528–6540 (2020).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Jansen, M. Volume effect or paddle-wheel mechanism-fast alkali-metal ionic conduction in solids with rotationally disordered complex anions. Angew. Chem. lnt. Ed. 30, 1547–1558 (1991).

    Article  Google Scholar 

  41. 41.

    Zhang, Z., Roy, P.-N., Li, H., Avdeev, M. & Nazar, L. F. Coupled cation–anion dynamics enhances cation mobility in room-temperature superionic solid-state electrolytes. J. Am. Chem. Soc. 141, 19360–19372 (2019).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Smith, J. G. & Siegel, D. J. Low-temperature paddlewheel effect in glassy solid electrolytes. Nat. Commun. 11, 1483 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    CAS  Article  Google Scholar 

  44. 44.

    Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Kanno, R. & Murayama, M. Lithium ionic conductor Thio-LISICON: the Li2S - GeS2 -P2S5 system. J. Electrochem. Soc. 148, A742 (2001).

    CAS  Article  Google Scholar 

  46. 46.

    Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). This work demonstrated that high ionic conductivity exceeding that of liquid organic electrolytes can be achieved in non-oxide inorganic solid.

    ADS  CAS  PubMed  Article  Google Scholar 

  47. 47.

    Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    ADS  CAS  Article  Google Scholar 

  48. 48.

    Adeli, P. et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem., Int. Ed. 131, 8773–8778 (2019).

    Article  Google Scholar 

  49. 49.

    Liu, Z. et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 135, 975–978 (2013).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Li, X. et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ. Sci. 13, 1429–1461 (2020).

    CAS  Article  Google Scholar 

  51. 51.

    Pimenta, V. et al. Synthesis of Li-Rich NMC: a comprehensive study. Chem. Mater. 29, 9923–9936 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Kang, K. & Ceder, G. Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 74, 094105 (2006).

    ADS  Article  CAS  Google Scholar 

  53. 53.

    Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  54. 54.

    Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  55. 55.

    Fedotov, S. et al. Crystal structure and Li-ion transport in Li2CoPO4F high-voltage cathode material for Li-ion batteries. J. Phys. Chem. C. 121, 3194–3202 (2017).

    CAS  Article  Google Scholar 

  56. 56.

    Yamakawa, S., Yamasaki, H., Koyama, T. & Asahi, R. Numerical study of Li diffusion in polycrystalline LiCoO2. J. Power Sources 223, 199–205 (2013).

    CAS  Article  Google Scholar 

  57. 57.

    Moriwake, H. et al. First-principles calculations of lithium-ion migration at a coherent grain boundary in a cathode material LiCoO2. Adv. Mater. 25, 618–622 (2013).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Gao, Y. et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors. Chem. Rev. 120, 5954–6008 (2020).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Casas-Cabanas, M., Reynaud, M., Rikarte, J., Horbach, P. & Rodriguez-Carvajal, J. FAULTS: a program for refinement of structures with extended defects. J. Appl. Crystallogr. 49, 2259–2269 (2016). This work introduces a tool for rigorous treatment of powder diffraction patterns from faulted structures.

    CAS  Article  Google Scholar 

  60. 60.

    Shunmugasundaram, R., Arumugam, R. S. & Dahn, J. R. A study of stacking faults and superlattice ordering in some li-rich layered transition metal oxide positive electrode materials. J. Electrochem. Soc. 163, A1394–A1400 (2016).

    CAS  Article  Google Scholar 

  61. 61.

    Serrano-Sevillano, J. et al. Enhanced electrochemical performance of Li-rich cathode materials through microstructural control. Phys. Chem. Chem. Phys. 20, 23112–23122 (2018).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Mancini, A. & Malavasi, L. Recent advances in the application of total scattering methods to functional materials. Chem. Commun. 51, 16592–16604 (2015).

    CAS  Article  Google Scholar 

  63. 63.

    Ji, H. et al. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries. Nat. Commun. 10, 592 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Pecher, O., Carretero-González, J., Griffith, K. J. & Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017).

    CAS  Article  Google Scholar 

  65. 65.

    Hadermann, J. & Abakumov, A. M. Structure solution and refinement of metal-ion battery cathode materials using electron diffraction tomography. Acta Cryst. B 75, 485–494 (2019). This review demonstrates capabilities of quantitative electron crystallography in structural characterization of battery materials.

    CAS  Article  Google Scholar 

  66. 66.

    Karakulina, O. M., Demortière, A., Dachraoui, W., Abakumov, A. M. & Hadermann, J. In situ electron diffraction tomography using a liquid-electrochemical transmission electron microscopy cell for crystal structure determination of cathode materials for li-ion batteries. Nano Lett. 18, 6286–6291 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  67. 67.

    Palatinus, L., Petříček, V. & Antunes Corrêa, C. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Cryst. A 71, 235–244 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    Mugnaioli, E. & Gorelik, T. E. Structure analysis of materials at the order–disorder borderline using three-dimensional electron diffraction. Acta Cryst. B 75, 550–563 (2019).

    CAS  Article  Google Scholar 

  69. 69.

    Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015).

    ADS  CAS  Article  Google Scholar 

  70. 70.

    Chung, S.-Y., Choi, S.-Y., Yamamoto, T. & Ikuhara, Y. Atomic-scale visualization of antisite defects in LiFePO4. Phys. Rev. Lett. 100, 125502 (2008).

    ADS  PubMed  Article  CAS  Google Scholar 

  71. 71.

    Gu, L. et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J. Am. Chem. Soc. 133, 4661–4663 (2011).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Lozano, J. G., Martinez, G. T., Jin, L., Nellist, P. D. & Bruce, P. G. Low-Dose aberration-free imaging of Li-rich cathode materials at various states of charge using electron ptychography. Nano Lett. 18, 6850–6855 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  73. 73.

    Yücelen, E., Lazić, I. & Bosch, E. G. T. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci. Rep. 8, 2676 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74.

    Van Aert, S. et al. Advanced electron crystallography through model based imaging. IUCrJ 3, 71–83 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    ADS  CAS  PubMed  Article  Google Scholar 

  76. 76.

    Foix, D., Sathiya, M., McCalla, E., Tarascon, J.-M. & Gonbeau, D. X-ray photoemission spectroscopy study of cationic and anionic redox processes in high-capacity Li-ion battery layered-oxide electrodes. J. Phys. Chem. C. 120, 862–874 (2016).

    CAS  Article  Google Scholar 

  77. 77.

    Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Yang, W. & Devereaux, T. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sour. 389, 188–197 (2018).

    ADS  CAS  Article  Google Scholar 

  79. 79.

    Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80.

    Chen, H. et al. Carbonophosphates: a new family of cathode materials for li-ion batteries identified computationally. Chem. Mater. 24, 2009–2016 (2012).

    ADS  CAS  Article  Google Scholar 

  81. 81.

    Hautier, G. et al. Designing multielectron lithium-ion phosphate cathodes by mixing transition metals. Chem. Mater. 25, 2064–2074 (2013).

    CAS  Article  Google Scholar 

  82. 82.

    Panin, R. V. et al. Pyrophosphates AMoP2O7 (A = Li and Na): Synthesis, structure and electrochemical properties. Mater. Res. Bull. 106, 170–175 (2018).

    CAS  Article  Google Scholar 

  83. 83.

    Jain, A. et al. A computational investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as cathodes for li ion batteries. J. Electrochem. Soc. 159, A622–A633 (2012).

    CAS  Article  Google Scholar 

  84. 84.

    Hautier, G. et al. Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem. Mater. 23, 3495–3508 (2011).

    CAS  Article  Google Scholar 

  85. 85.

    Herklotz, M. et al. Electrochemical oxidation of trivalent chromium in a phosphate matrix: Li3Cr2(PO4)3 as cathode material for lithium ion batteries. Electrochim. Acta 139, 356–364 (2014).

    CAS  Article  Google Scholar 

  86. 86.

    Perez, A. J. et al. Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4. Nat. Energy 2, 954–962 (2017).

    ADS  CAS  Article  Google Scholar 

  87. 87.

    Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  88. 88.

    House, R. A. et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy Environ. Sci. 11, 926–932 (2018).

    CAS  Article  Google Scholar 

  89. 89.

    House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  90. 90.

    Ji, H. et al. Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat. Energy 5, 213–221 (2020).

    ADS  CAS  Article  Google Scholar 

  91. 91.

    Saha, S. et al. Exploring the bottlenecks of anionic redox in Li-rich layered sulfides. Nat. Energy 4, 977–987 (2019).

    ADS  CAS  Article  Google Scholar 

  92. 92.

    Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and applications of machine learning in solid state materials science. npj Comput. Mater. 5, 83 (2019).

    ADS  Article  Google Scholar 

  93. 93.

    Winter, S. M. et al. Models and materials for generalized Kitaev magnetism. J. Phys.: Condens. Matter 29, 493002 (2017).

    Google Scholar 

  94. 94.

    Alekseeva, A. M. et al. New superconductor LixFe1+δSe (x ≤ 0.07, Tc up to 44 K) by an electrochemical route. Sci. Rep. 6, 25624 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Lu, Z. et al. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 5, 4345 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  96. 96.

    Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    ADS  CAS  Article  Google Scholar 

  97. 97.

    Gutierrez, A., Benedek, N. A. & Manthiram, A. Crystal-chemical guide for understanding redox energy variations of M2+/3+ couples in polyanion cathodes for lithium-ion batteries. Chem. Mater. 25, 4010–4016 (2013). This work provides crystal-chemical rationale behind the redox potentials in polyanion cathodes.

    CAS  Article  Google Scholar 

  98. 98.

    Fedotov, S. S. et al. Titanium-based potassium-ion battery positive electrode with extraordinarily high redox potential. Nat. Commun. 11, 1484 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Adams, S. From bond valence maps to energy landscapes for mobile ions in ion-conducting solids. Solid State Ion. 177, 1625–1630 (2006).

    CAS  Article  Google Scholar 

  100. 100.

    Adams, S. & Rao, R. P. Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. Phys. Chem. Chem. Phys. 11, 3210 (2009).

    CAS  PubMed  Article  Google Scholar 

Original Text (This is the original text for your reference.)

  1. 1.

    Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Urban, A., Seo, D.-H. & Ceder, G. Computational understanding of Li-ion batteries. npj Comput. Mater. 2, 16002 (2016).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Islam, M. S. & Fisher, C. A. J. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43, 185–204 (2014).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Tabor, D. P. et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    de Pablo, J. J. et al. New frontiers for the materials genome initiative. Npj Comput. Mater. 5, 41 (2019).

    ADS  Article  Google Scholar 

  6. 6.

    Gomes, C. P., Selman, B. & Gregoire, J. M. Artificial intelligence for materials discovery. MRS Bull. 44, 538–544 (2019).

    Article  Google Scholar 

  7. 7.

    Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018). This seminal review highlights theoretical background, practical realizationand limitations of a reversible and stable anionic redox activity in metal-ion battery cathodes.

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    ADS  CAS  Article  Google Scholar 

  9. 9.

    Rouxel, J. Anion–cation redox competition and the formation of new compounds in highly covalent systems. Chem. Eur. J. 2, 1053–1059 (1996).

    CAS  Article  Google Scholar 

  10. 10.

    Xie, Y., Saubanere, M. & Doublet, M.-L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10, 266–274 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Ben Yahia, M., Vergnet, J., Saubanère, M. & Doublet, M.-L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019). This work provides a theoretical framework for the unified picture of anionic redox reactions in A-rich transition metal oxides.

    ADS  PubMed  Article  CAS  Google Scholar 

  12. 12.

    Furuseth, S., Brattås, L., Kjekshus, A., Andresen, A. F. & Fischer, P. On the Crystal Structures of TiS3, ZrS3, ZrSe3, ZrTe3, HfS3, and HfSe3. Acta Chem. Scand. 29a, 623–631 (1975).

    Article  Google Scholar 

  13. 13.

    Brostigen, G. & Kjekshus, A. Redetermined crystal structure of FeS2 (pyrite). Acta Chem. Scand. 23, 2186–2188 (1969).

    CAS  Article  Google Scholar 

  14. 14.

    Sasaki, S. et al. A new chemistry route to synthesize layered materials based on the redox reactivity of anionic chalcogen dimers. Angew. Chem. Int. Ed. 57, 13618–13623 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    McCalla, E. et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015). This work demonstrated a cooperative distortion of the oxygen framework associated with the anionic redox.

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Pearce, P. E. et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nat. Mater. 16, 580–587 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  17. 17.

    Vergnet, J., Saubanere, M., Doublet, M.-L. & Tarascon, J.-M. The structural stability of P2-layered na-based electrodes during anionic redox. Joule 4, 1–15 (2020).

    Article  CAS  Google Scholar 

  18. 18.

    Saubanere, M., McCalla, E., Tarascon, J.-M. & Doublet, M.-L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9, 984–991 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Hu, Q. et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles. Nature 534, 241–244 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Streltsov, S. S., Shorikov, A. O., Skornyakov, S. L., Poteryaev, A. I. & Khomskii, D. I. Unexpected 3+ valence of iron in FeO2, a geologically important material lying “in between” oxides and peroxides. Sci. Rep. 7, 13005 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016). This work uncovered the role of non-bonding oxygen orbitals in the extra capacity delivered by anionic redox.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Maitra, U. et al. Oxygen redox chemistry without excess alkali metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10, 288–295 (2018).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Kou, X.-j, Ke, H., Zhu, C.-b & Rolfe, P. First-principles study of the chemical bonding and conduction behavior of LiFePO4. Chem. Phys. 446, 1–6 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Kinyanjui, M. K. et al. Origin of valence and core excitations in LiFePO4 and FePO4. J. Phys. Condens. Matter 22, 275501 (2010).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Tereshchenko, I. V. et al. The role of semilabile oxygen atoms for intercalation chemistry of the metal-ion battery polyanion cathodes. J. Am. Chem. Soc. 140, 3994–4003 (2018).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Karakulina, O. M. et al. Antisite disorder and bond valence compensation in Li2FePO4F cathode for Li-ion batteries. Chem. Mater. 28, 7578–7581 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Masese, T. et al. Crystal structural changes and charge compensation mechanism during two lithium extraction/insertion between Li2FeSiO4 and FeSiO4. J. Phys. Chem. C. 119, 10206–10211 (2015).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Yin, W. et al. Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nat. Commun. 11, 1252 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Pecquenard, B. et al. Structure of hydrated tungsten peroxides [WO2(O2)H2O].nH2O. Chem. Mater. 10, 1882–1888 (1998).

    CAS  Article  Google Scholar 

  31. 31.

    Famprikis, T., Canepa, P., Dawson, J. A., Saiful Islam, M. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  32. 32.

    Meutzner, F. et al. Computational analysis and identification of battery materials. Phys. Sci. Rev. 4, 20180044 (2018). This review demonstrates the geometric and crystal-chemical approaches and methodologies to identify perspective electrochemical energy storage materials.

  33. 33.

    Adams, S. Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Cryst. B 57, 278–287 (2001).

    CAS  Article  Google Scholar 

  34. 34.

    Xiao, R., Li, H. & Chen, L. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci. Rep. 5, 14227 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Eremin, R. A., Kabanova, N. A., Morkhova, Y. A., Golov, A. A. & Blatov, V. A. High-throughput search for potential potassium ion conductors: a combination of geometrical-topological and density functional theory approaches. Solid State Ion. 326, 188–199 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Fedotov, S. S. et al. Crystallochemical tools in the search for cathode materials of rechargeable Na-ion batteries and analysis of their transport properties. Solid State Ion. 314, 129–140 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015). This work reveals a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Krauskopf, T. et al. Comparing the Descriptors for Investigating the Influence of Lattice Dynamics on Ionic Transport Using the Superionic Conductor Na3PS4–xSex. J. Am. Chem. Soc. 140, 14464–14473 (2018).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Saha, S. et al. Structural polymorphism in Na4Zn(PO4)2 driven by rotational order−disorder transitions and the impact of heterovalent substitutions on Na-Ion conductivity. Inorg. Chem. 59, 6528–6540 (2020).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Jansen, M. Volume effect or paddle-wheel mechanism-fast alkali-metal ionic conduction in solids with rotationally disordered complex anions. Angew. Chem. lnt. Ed. 30, 1547–1558 (1991).

    Article  Google Scholar 

  41. 41.

    Zhang, Z., Roy, P.-N., Li, H., Avdeev, M. & Nazar, L. F. Coupled cation–anion dynamics enhances cation mobility in room-temperature superionic solid-state electrolytes. J. Am. Chem. Soc. 141, 19360–19372 (2019).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Smith, J. G. & Siegel, D. J. Low-temperature paddlewheel effect in glassy solid electrolytes. Nat. Commun. 11, 1483 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    CAS  Article  Google Scholar 

  44. 44.

    Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Kanno, R. & Murayama, M. Lithium ionic conductor Thio-LISICON: the Li2S - GeS2 -P2S5 system. J. Electrochem. Soc. 148, A742 (2001).

    CAS  Article  Google Scholar 

  46. 46.

    Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). This work demonstrated that high ionic conductivity exceeding that of liquid organic electrolytes can be achieved in non-oxide inorganic solid.

    ADS  CAS  PubMed  Article  Google Scholar 

  47. 47.

    Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    ADS  CAS  Article  Google Scholar 

  48. 48.

    Adeli, P. et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem., Int. Ed. 131, 8773–8778 (2019).

    Article  Google Scholar 

  49. 49.

    Liu, Z. et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 135, 975–978 (2013).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Li, X. et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ. Sci. 13, 1429–1461 (2020).

    CAS  Article  Google Scholar 

  51. 51.

    Pimenta, V. et al. Synthesis of Li-Rich NMC: a comprehensive study. Chem. Mater. 29, 9923–9936 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Kang, K. & Ceder, G. Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 74, 094105 (2006).

    ADS  Article  CAS  Google Scholar 

  53. 53.

    Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  54. 54.

    Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  55. 55.

    Fedotov, S. et al. Crystal structure and Li-ion transport in Li2CoPO4F high-voltage cathode material for Li-ion batteries. J. Phys. Chem. C. 121, 3194–3202 (2017).

    CAS  Article  Google Scholar 

  56. 56.

    Yamakawa, S., Yamasaki, H., Koyama, T. & Asahi, R. Numerical study of Li diffusion in polycrystalline LiCoO2. J. Power Sources 223, 199–205 (2013).

    CAS  Article  Google Scholar 

  57. 57.

    Moriwake, H. et al. First-principles calculations of lithium-ion migration at a coherent grain boundary in a cathode material LiCoO2. Adv. Mater. 25, 618–622 (2013).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Gao, Y. et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors. Chem. Rev. 120, 5954–6008 (2020).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Casas-Cabanas, M., Reynaud, M., Rikarte, J., Horbach, P. & Rodriguez-Carvajal, J. FAULTS: a program for refinement of structures with extended defects. J. Appl. Crystallogr. 49, 2259–2269 (2016). This work introduces a tool for rigorous treatment of powder diffraction patterns from faulted structures.

    CAS  Article  Google Scholar 

  60. 60.

    Shunmugasundaram, R., Arumugam, R. S. & Dahn, J. R. A study of stacking faults and superlattice ordering in some li-rich layered transition metal oxide positive electrode materials. J. Electrochem. Soc. 163, A1394–A1400 (2016).

    CAS  Article  Google Scholar 

  61. 61.

    Serrano-Sevillano, J. et al. Enhanced electrochemical performance of Li-rich cathode materials through microstructural control. Phys. Chem. Chem. Phys. 20, 23112–23122 (2018).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Mancini, A. & Malavasi, L. Recent advances in the application of total scattering methods to functional materials. Chem. Commun. 51, 16592–16604 (2015).

    CAS  Article  Google Scholar 

  63. 63.

    Ji, H. et al. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries. Nat. Commun. 10, 592 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Pecher, O., Carretero-González, J., Griffith, K. J. & Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017).

    CAS  Article  Google Scholar 

  65. 65.

    Hadermann, J. & Abakumov, A. M. Structure solution and refinement of metal-ion battery cathode materials using electron diffraction tomography. Acta Cryst. B 75, 485–494 (2019). This review demonstrates capabilities of quantitative electron crystallography in structural characterization of battery materials.

    CAS  Article  Google Scholar 

  66. 66.

    Karakulina, O. M., Demortière, A., Dachraoui, W., Abakumov, A. M. & Hadermann, J. In situ electron diffraction tomography using a liquid-electrochemical transmission electron microscopy cell for crystal structure determination of cathode materials for li-ion batteries. Nano Lett. 18, 6286–6291 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  67. 67.

    Palatinus, L., Petříček, V. & Antunes Corrêa, C. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Cryst. A 71, 235–244 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    Mugnaioli, E. & Gorelik, T. E. Structure analysis of materials at the order–disorder borderline using three-dimensional electron diffraction. Acta Cryst. B 75, 550–563 (2019).

    CAS  Article  Google Scholar 

  69. 69.

    Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015).

    ADS  CAS  Article  Google Scholar 

  70. 70.

    Chung, S.-Y., Choi, S.-Y., Yamamoto, T. & Ikuhara, Y. Atomic-scale visualization of antisite defects in LiFePO4. Phys. Rev. Lett. 100, 125502 (2008).

    ADS  PubMed  Article  CAS  Google Scholar 

  71. 71.

    Gu, L. et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J. Am. Chem. Soc. 133, 4661–4663 (2011).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Lozano, J. G., Martinez, G. T., Jin, L., Nellist, P. D. & Bruce, P. G. Low-Dose aberration-free imaging of Li-rich cathode materials at various states of charge using electron ptychography. Nano Lett. 18, 6850–6855 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  73. 73.

    Yücelen, E., Lazić, I. & Bosch, E. G. T. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci. Rep. 8, 2676 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74.

    Van Aert, S. et al. Advanced electron crystallography through model based imaging. IUCrJ 3, 71–83 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    ADS  CAS  PubMed  Article  Google Scholar 

  76. 76.

    Foix, D., Sathiya, M., McCalla, E., Tarascon, J.-M. & Gonbeau, D. X-ray photoemission spectroscopy study of cationic and anionic redox processes in high-capacity Li-ion battery layered-oxide electrodes. J. Phys. Chem. C. 120, 862–874 (2016).

    CAS  Article  Google Scholar 

  77. 77.

    Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Yang, W. & Devereaux, T. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sour. 389, 188–197 (2018).

    ADS  CAS  Article  Google Scholar 

  79. 79.

    Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80.

    Chen, H. et al. Carbonophosphates: a new family of cathode materials for li-ion batteries identified computationally. Chem. Mater. 24, 2009–2016 (2012).

    ADS  CAS  Article  Google Scholar 

  81. 81.

    Hautier, G. et al. Designing multielectron lithium-ion phosphate cathodes by mixing transition metals. Chem. Mater. 25, 2064–2074 (2013).

    CAS  Article  Google Scholar 

  82. 82.

    Panin, R. V. et al. Pyrophosphates AMoP2O7 (A = Li and Na): Synthesis, structure and electrochemical properties. Mater. Res. Bull. 106, 170–175 (2018).

    CAS  Article  Google Scholar 

  83. 83.

    Jain, A. et al. A computational investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as cathodes for li ion batteries. J. Electrochem. Soc. 159, A622–A633 (2012).

    CAS  Article  Google Scholar 

  84. 84.

    Hautier, G. et al. Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem. Mater. 23, 3495–3508 (2011).

    CAS  Article  Google Scholar 

  85. 85.

    Herklotz, M. et al. Electrochemical oxidation of trivalent chromium in a phosphate matrix: Li3Cr2(PO4)3 as cathode material for lithium ion batteries. Electrochim. Acta 139, 356–364 (2014).

    CAS  Article  Google Scholar 

  86. 86.

    Perez, A. J. et al. Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4. Nat. Energy 2, 954–962 (2017).

    ADS  CAS  Article  Google Scholar 

  87. 87.

    Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  88. 88.

    House, R. A. et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy Environ. Sci. 11, 926–932 (2018).

    CAS  Article  Google Scholar 

  89. 89.

    House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  90. 90.

    Ji, H. et al. Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat. Energy 5, 213–221 (2020).

    ADS  CAS  Article  Google Scholar 

  91. 91.

    Saha, S. et al. Exploring the bottlenecks of anionic redox in Li-rich layered sulfides. Nat. Energy 4, 977–987 (2019).

    ADS  CAS  Article  Google Scholar 

  92. 92.

    Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and applications of machine learning in solid state materials science. npj Comput. Mater. 5, 83 (2019).

    ADS  Article  Google Scholar 

  93. 93.

    Winter, S. M. et al. Models and materials for generalized Kitaev magnetism. J. Phys.: Condens. Matter 29, 493002 (2017).

    Google Scholar 

  94. 94.

    Alekseeva, A. M. et al. New superconductor LixFe1+δSe (x ≤ 0.07, Tc up to 44 K) by an electrochemical route. Sci. Rep. 6, 25624 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Lu, Z. et al. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 5, 4345 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  96. 96.

    Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    ADS  CAS  Article  Google Scholar 

  97. 97.

    Gutierrez, A., Benedek, N. A. & Manthiram, A. Crystal-chemical guide for understanding redox energy variations of M2+/3+ couples in polyanion cathodes for lithium-ion batteries. Chem. Mater. 25, 4010–4016 (2013). This work provides crystal-chemical rationale behind the redox potentials in polyanion cathodes.

    CAS  Article  Google Scholar 

  98. 98.

    Fedotov, S. S. et al. Titanium-based potassium-ion battery positive electrode with extraordinarily high redox potential. Nat. Commun. 11, 1484 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Adams, S. From bond valence maps to energy landscapes for mobile ions in ion-conducting solids. Solid State Ion. 177, 1625–1630 (2006).

    CAS  Article  Google Scholar 

  100. 100.

    Adams, S. & Rao, R. P. Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. Phys. Chem. Chem. Phys. 11, 3210 (2009).

    CAS  PubMed  Article  Google Scholar 

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel