Welcome to the IKCEST
Cryo-EM structure of a Ca 2+ -bound photosynthetic LH1-RC complex containing multiple αβ-polypeptides
  1. 1.

    Croce, R. & van Amerongen, H. Natural strategies for photosynthetic light-harvesting. Nat. Chem. Biol. 10, 492–501 (2014).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Reimers, J. R. et al. Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. Biochim. Biophys. Acta 1857, 1627–1640 (2016).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Mirkovic, T. et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2017).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Madigan, M. T. A novel photosynthetic bacterium isolated from a Yellowstone hot spring. Science 225, 313–315 (1984).

    ADS  CAS  PubMed  Article  Google Scholar 

  5. 5.

    Glaeser, J. & Overmann, J. Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch. Microbiol. 171, 405–416 (1999).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Permentier, H. P., Neerken, S., Overmann, J. & Amesz, J. A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm. Biochemistry 40, 5573–5578 (2001).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Kimura, Y. et al. Effects of calcium ions on the thermostability and spectroscopic properties of the LH1-RC complex from a new thermophilic purple bacterium Allochromatium tepidum. J. Phys. Chem. B 121, 5025–5032 (2017).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Suzuki, H. et al. Purification, characterization and crystallization of the core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. Biochim. Biophys. Acta 1767, 1057–1063 (2007).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Kimura, Y. et al. Calcium ions are involved in the unusual red shift of the light-harvesting 1 Qy transition of the core complex in thermophilic purple sulfur bacterium Thermochromatium tepidum. J. Biol. Chem. 283, 13867–13873 (2008).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Kimura, Y., Yu, L.-J., Hirano, Y., Suzuki, H. & Wang, Z.-Y. Calcium ions are required for the enhanced thermal stability of the light-harvesting-reaction center core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. J. Biol. Chem. 284, 93–99 (2009).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Yu, L.-J., Kato, S. & Wang, Z.-Y. Examination of the putative Ca2+-binding site in the light-harvesting complex 1 of thermophilic purple sulfur bacterium Thermochromatium tepidum. Photosynth. Res. 106, 215–220 (2010).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Niwa, S. et al. Structure of the LH1-RC complex from Thermochromatium tepidum at 3.0 Å. Nature 508, 228–232 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  13. 13.

    Yu, L.-J., Suga, M., Wang-Otomo, Z.-Y. & Shen, J.-R. Structure of photosynthetic LH1-RC supercomplex at 1.9 Å resolution. Nature 556, 209–213 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  14. 14.

    Ma, F., Yu, L.-J., Wang-Otomo, Z.-Y. & van Grondelle, R. The origin of the unusual Qy red shift in LH1-RC complexes from purple bacteria Thermochromatium tepidum as revealed by Stark absorption spectroscopy. Biochim. Biophys. Acta 1847, 1479–1486 (2015).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Ma, F., Yu, L.-J., Hendrikx, R., Wang-Otomo, Z.-Y. & van Grondelle, R. Direct observation of energy detrapping in LH1-RC complex by two-dimensional electronic spectroscopy. J. Am. Chem. Soc. 139, 591–594 (2017).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Imanishi, M. et al. A dual role for Ca2+ in expanding the spectral diversity and stability of light-harvesting 1 reaction center photocomplexes of purple phototrophic bacteria. Biochemistry 58, 2844–2852 (2019).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Tan, L.-M. et al. New insights into the mechanism of uphill excitation energy transfer from core antenna to reaction center in purple photosynthetic bacteria. J. Phys. Chem. Lett. 9, 3278–3284 (2018).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Kimura, Y. et al. Metal cations modulate the bacteriochlorophyll-protein interaction in the light-harvesting 1 core complex from Thermochromatium tepidum. Biochim. Biophys. Acta 1817, 1022–1029 (2012).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Yu, L.-J., Kawakami, T., Kimura, Y. & Wang-Otomo, Z.-Y. Structural basis for the unusual Qy red-shift and enhanced thermostability of the LH1 complex from Thermochromatium tepidum. Biochemistry 55, 6495–6504 (2016).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Kimura, Y. et al. Spectroscopic and thermodynamic characterization of the metal-binding sites in the LH1-RC complex from thermophilic photosynthetic bacterium Thermochromatium tepidum. J. Phys. Chem. B 120, 12466–12473 (2016).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Rücker, O., Köhler, A., Behammer, B., Sichau, K. & Overmann, J. Puf operon sequences and inferred structures of light-harvesting complexes of three closely related Chromatiaceae exhibiting different absorption characteristics. Arch. Microbiol. 194, 123–134 (2012).

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Koepke, J. et al. pH Modulates the quinone position in the photosynthetic reaction center from Rhodobacter sphaeroides in the neutral and charge separated states. J. Mol. Biol. 371, 396–409 (2007).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Qian, P., Siebert, C. A., Wang, P., Canniffe, D. P. & Hunter, C. N. Cryo-EM structure of the Blastochloris viridis LH1-RC complex at 2.9 Å. Nature 556, 203–208 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  24. 24.

    Williams, J. C. et al. Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides. Biochemistry 31, 11029–11037 (1992).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Murchison, H. A. et al. Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: phenylalanine to leucine at L167 and histidine to phenylalanine at L168. Biochemistry 32, 3498–3505 (1993).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Mattioli, T. A., Lin, X., Allen, J. P. & Williams, J. C. Correlation between multiple hydrogen bonding and alteration of the oxidation potential of the bacteriochlorophyll dimer of reaction centers from Rhodobacter sphaeroides. Biochemistry 34, 6142–6152 (1995).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Nagatsuma, S. et al. Phospholipid distributions in purple phototrophic bacteria and LH1-RC core complexes. Biochim. Biophys. Acta Bioenerg. 1860, 461–468 (2019).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Jakob-Grun, S., Radeck, J. & Braun, P. Ca2+-binding reduces conformational flexibility of RC-LH1 core complex from thermophilic Thermochromatium tepidum. Photosynth. Res. 111, 139–147 (2012).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Ma, F., Yu, L.-J., Hendrikx, R., Wang-Otomo, Z.-Y. & van Grondelle, R. Excitonic and vibrational coherence in the excitation relaxation process of two LH1 complexes as revealed by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 8, 2751–2756 (2017).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Ma, F. et al. Metal cations induced ab-BChl a heterogeneity in LH1 as revealed by temperature-dependent fluorescence splitting. ChemPhysChem 18, 2295–2301 (2017).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Cogdell, R. J., Howard, T. D., Isaac, N. W., McLuskey, K. & Gardiner, A. T. Structural factors which control the position of the Qy absorption band of bacteriochlorophyll a in purple bacterial antenna complexes. Photosynth. Res. 74, 135–141 (2002).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Cogdell, R. J., Gall, A. & Köhler, J. The architecture and function of the light-harvesting apparatus of purple bacterial: from single molecules to in vivo membranes. Quart. Rev. Biophys. 39, 227–324 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    Robert, B. In The purple phototrophic bacteria (eds Hunter, C. N., Daldal, F. & Beatty, J. T.) 199–212 (Springer, 2009).

  34. 34.

    Sturgis, J. N. & Robert, B. Pigment binding-site and electronic properties in light-harvesting proteins of purple bacteria. J. Phys. Chem. 101, 7227–7231 (1997).

    CAS  Article  Google Scholar 

  35. 35.

    Uyeda, U., Williams, J. C., Roman, M., Mattioli, T. A. & Allen, J. P. The influence of hydrogen bonds on the electronic structure of light-harvesting complexes from photosynthetic bacteria. Biochemistry 49, 1146–1159 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Zerlauskiene, O. et al. Static and dynamic protein impact on electronic properties of light-harvesting complex LH2. J. Phys. Chem. B 112, 15883–15892 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Mascle-Allemand, C., Duquesne, K., Lebrun, R., Scheuring, S. & Sturgis, J. N. Antenna mixing in photosynthetic membranes from Phaeospirillum molischianum. Proc. Natl Acad. Sci. USA 107, 5357–5362 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Brotosudarmo, T. H. P. et al. Single-molecule spectroscopy reveals that individual low-light LH2 complexes from Rhodopseudomonas palustris 2.1.6. have a heterogeneous polypeptide composition. Biophys. J. 97, 1491–1500 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Dutton, P. L., Kaufmann, K. J., Chance, B. & Rentzepis, P. M. Picosecond kinetics of the 1250 nm band of the Rps. sphaeroides reaction center: the nature of the primary photochemical intermediary state. FEBS Lett. 60, 275–280 (1975).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Kobayashi, M. et al. Reconstitution and replacement of bacteriochlorophyll a molecules in photosynthetic reaction centers. J. Biochem. 136, 363–369 (2004).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Philipson, K. D. & Sauer, K. Comparative study of the circular dichroism spectra of reaction centers from several photosynthetic bacteria. Biochemistry 12, 535–539 (1973).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Sekine, F. et al. Gene sequencing and characterization of the light-harvesting complex 2 from thermophilic purple sulfur bacterium Thermochromatium tepidum. Photosynth. Res. 111, 9–18 (2012).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Kimura, Y. et al. Characterization of the quinones in purple sulfur bacterium Thermochromatium tepidum. FEBS Lett. 589, 1761–1765 (2015).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Rohou, A. & Grigorieff, N. Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS  Article  Google Scholar 

  49. 49.

    Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    CAS  Article  Google Scholar 

  50. 50.

    Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  Article  Google Scholar 

  51. 51.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D66, 486–501 (2010).

    Google Scholar 

  52. 52.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Nicholls, R. A., Tykac, M., Kovalevskiy, O. & Murshudov, G. N. Current approaches for the fitting and refinement of atomic models into cryo-EM maps using CCP-EM. Acta Crystallogr. D Struct. Biol. 74, 492–505 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    DeLano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific, LCC, San Carlos, CA USA, 2004).

Original Text (This is the original text for your reference.)

  1. 1.

    Croce, R. & van Amerongen, H. Natural strategies for photosynthetic light-harvesting. Nat. Chem. Biol. 10, 492–501 (2014).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Reimers, J. R. et al. Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. Biochim. Biophys. Acta 1857, 1627–1640 (2016).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Mirkovic, T. et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2017).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Madigan, M. T. A novel photosynthetic bacterium isolated from a Yellowstone hot spring. Science 225, 313–315 (1984).

    ADS  CAS  PubMed  Article  Google Scholar 

  5. 5.

    Glaeser, J. & Overmann, J. Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch. Microbiol. 171, 405–416 (1999).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Permentier, H. P., Neerken, S., Overmann, J. & Amesz, J. A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm. Biochemistry 40, 5573–5578 (2001).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Kimura, Y. et al. Effects of calcium ions on the thermostability and spectroscopic properties of the LH1-RC complex from a new thermophilic purple bacterium Allochromatium tepidum. J. Phys. Chem. B 121, 5025–5032 (2017).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Suzuki, H. et al. Purification, characterization and crystallization of the core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. Biochim. Biophys. Acta 1767, 1057–1063 (2007).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Kimura, Y. et al. Calcium ions are involved in the unusual red shift of the light-harvesting 1 Qy transition of the core complex in thermophilic purple sulfur bacterium Thermochromatium tepidum. J. Biol. Chem. 283, 13867–13873 (2008).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Kimura, Y., Yu, L.-J., Hirano, Y., Suzuki, H. & Wang, Z.-Y. Calcium ions are required for the enhanced thermal stability of the light-harvesting-reaction center core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. J. Biol. Chem. 284, 93–99 (2009).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Yu, L.-J., Kato, S. & Wang, Z.-Y. Examination of the putative Ca2+-binding site in the light-harvesting complex 1 of thermophilic purple sulfur bacterium Thermochromatium tepidum. Photosynth. Res. 106, 215–220 (2010).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Niwa, S. et al. Structure of the LH1-RC complex from Thermochromatium tepidum at 3.0 Å. Nature 508, 228–232 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  13. 13.

    Yu, L.-J., Suga, M., Wang-Otomo, Z.-Y. & Shen, J.-R. Structure of photosynthetic LH1-RC supercomplex at 1.9 Å resolution. Nature 556, 209–213 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  14. 14.

    Ma, F., Yu, L.-J., Wang-Otomo, Z.-Y. & van Grondelle, R. The origin of the unusual Qy red shift in LH1-RC complexes from purple bacteria Thermochromatium tepidum as revealed by Stark absorption spectroscopy. Biochim. Biophys. Acta 1847, 1479–1486 (2015).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Ma, F., Yu, L.-J., Hendrikx, R., Wang-Otomo, Z.-Y. & van Grondelle, R. Direct observation of energy detrapping in LH1-RC complex by two-dimensional electronic spectroscopy. J. Am. Chem. Soc. 139, 591–594 (2017).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Imanishi, M. et al. A dual role for Ca2+ in expanding the spectral diversity and stability of light-harvesting 1 reaction center photocomplexes of purple phototrophic bacteria. Biochemistry 58, 2844–2852 (2019).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Tan, L.-M. et al. New insights into the mechanism of uphill excitation energy transfer from core antenna to reaction center in purple photosynthetic bacteria. J. Phys. Chem. Lett. 9, 3278–3284 (2018).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Kimura, Y. et al. Metal cations modulate the bacteriochlorophyll-protein interaction in the light-harvesting 1 core complex from Thermochromatium tepidum. Biochim. Biophys. Acta 1817, 1022–1029 (2012).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Yu, L.-J., Kawakami, T., Kimura, Y. & Wang-Otomo, Z.-Y. Structural basis for the unusual Qy red-shift and enhanced thermostability of the LH1 complex from Thermochromatium tepidum. Biochemistry 55, 6495–6504 (2016).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Kimura, Y. et al. Spectroscopic and thermodynamic characterization of the metal-binding sites in the LH1-RC complex from thermophilic photosynthetic bacterium Thermochromatium tepidum. J. Phys. Chem. B 120, 12466–12473 (2016).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Rücker, O., Köhler, A., Behammer, B., Sichau, K. & Overmann, J. Puf operon sequences and inferred structures of light-harvesting complexes of three closely related Chromatiaceae exhibiting different absorption characteristics. Arch. Microbiol. 194, 123–134 (2012).

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Koepke, J. et al. pH Modulates the quinone position in the photosynthetic reaction center from Rhodobacter sphaeroides in the neutral and charge separated states. J. Mol. Biol. 371, 396–409 (2007).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Qian, P., Siebert, C. A., Wang, P., Canniffe, D. P. & Hunter, C. N. Cryo-EM structure of the Blastochloris viridis LH1-RC complex at 2.9 Å. Nature 556, 203–208 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  24. 24.

    Williams, J. C. et al. Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides. Biochemistry 31, 11029–11037 (1992).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Murchison, H. A. et al. Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: phenylalanine to leucine at L167 and histidine to phenylalanine at L168. Biochemistry 32, 3498–3505 (1993).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Mattioli, T. A., Lin, X., Allen, J. P. & Williams, J. C. Correlation between multiple hydrogen bonding and alteration of the oxidation potential of the bacteriochlorophyll dimer of reaction centers from Rhodobacter sphaeroides. Biochemistry 34, 6142–6152 (1995).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Nagatsuma, S. et al. Phospholipid distributions in purple phototrophic bacteria and LH1-RC core complexes. Biochim. Biophys. Acta Bioenerg. 1860, 461–468 (2019).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Jakob-Grun, S., Radeck, J. & Braun, P. Ca2+-binding reduces conformational flexibility of RC-LH1 core complex from thermophilic Thermochromatium tepidum. Photosynth. Res. 111, 139–147 (2012).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Ma, F., Yu, L.-J., Hendrikx, R., Wang-Otomo, Z.-Y. & van Grondelle, R. Excitonic and vibrational coherence in the excitation relaxation process of two LH1 complexes as revealed by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 8, 2751–2756 (2017).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Ma, F. et al. Metal cations induced ab-BChl a heterogeneity in LH1 as revealed by temperature-dependent fluorescence splitting. ChemPhysChem 18, 2295–2301 (2017).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Cogdell, R. J., Howard, T. D., Isaac, N. W., McLuskey, K. & Gardiner, A. T. Structural factors which control the position of the Qy absorption band of bacteriochlorophyll a in purple bacterial antenna complexes. Photosynth. Res. 74, 135–141 (2002).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Cogdell, R. J., Gall, A. & Köhler, J. The architecture and function of the light-harvesting apparatus of purple bacterial: from single molecules to in vivo membranes. Quart. Rev. Biophys. 39, 227–324 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    Robert, B. In The purple phototrophic bacteria (eds Hunter, C. N., Daldal, F. & Beatty, J. T.) 199–212 (Springer, 2009).

  34. 34.

    Sturgis, J. N. & Robert, B. Pigment binding-site and electronic properties in light-harvesting proteins of purple bacteria. J. Phys. Chem. 101, 7227–7231 (1997).

    CAS  Article  Google Scholar 

  35. 35.

    Uyeda, U., Williams, J. C., Roman, M., Mattioli, T. A. & Allen, J. P. The influence of hydrogen bonds on the electronic structure of light-harvesting complexes from photosynthetic bacteria. Biochemistry 49, 1146–1159 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Zerlauskiene, O. et al. Static and dynamic protein impact on electronic properties of light-harvesting complex LH2. J. Phys. Chem. B 112, 15883–15892 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Mascle-Allemand, C., Duquesne, K., Lebrun, R., Scheuring, S. & Sturgis, J. N. Antenna mixing in photosynthetic membranes from Phaeospirillum molischianum. Proc. Natl Acad. Sci. USA 107, 5357–5362 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Brotosudarmo, T. H. P. et al. Single-molecule spectroscopy reveals that individual low-light LH2 complexes from Rhodopseudomonas palustris 2.1.6. have a heterogeneous polypeptide composition. Biophys. J. 97, 1491–1500 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Dutton, P. L., Kaufmann, K. J., Chance, B. & Rentzepis, P. M. Picosecond kinetics of the 1250 nm band of the Rps. sphaeroides reaction center: the nature of the primary photochemical intermediary state. FEBS Lett. 60, 275–280 (1975).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Kobayashi, M. et al. Reconstitution and replacement of bacteriochlorophyll a molecules in photosynthetic reaction centers. J. Biochem. 136, 363–369 (2004).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Philipson, K. D. & Sauer, K. Comparative study of the circular dichroism spectra of reaction centers from several photosynthetic bacteria. Biochemistry 12, 535–539 (1973).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Sekine, F. et al. Gene sequencing and characterization of the light-harvesting complex 2 from thermophilic purple sulfur bacterium Thermochromatium tepidum. Photosynth. Res. 111, 9–18 (2012).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Kimura, Y. et al. Characterization of the quinones in purple sulfur bacterium Thermochromatium tepidum. FEBS Lett. 589, 1761–1765 (2015).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Rohou, A. & Grigorieff, N. Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS  Article  Google Scholar 

  49. 49.

    Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    CAS  Article  Google Scholar 

  50. 50.

    Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  Article  Google Scholar 

  51. 51.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D66, 486–501 (2010).

    Google Scholar 

  52. 52.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Nicholls, R. A., Tykac, M., Kovalevskiy, O. & Murshudov, G. N. Current approaches for the fitting and refinement of atomic models into cryo-EM maps using CCP-EM. Acta Crystallogr. D Struct. Biol. 74, 492–505 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    DeLano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific, LCC, San Carlos, CA USA, 2004).

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel