- 1.
Rabinowitz, D. Seven forms of rarity. In The biological aspects of rare plant conservation (ed. Synge, H.) 205–217 (1981).
- 2.
Gaston, K. J. & Kunin, W. E. The Biology of Rarity 12–29 (Springer, 1997).
- 3.
Pompa, S., Ehrlich, P. R. & Ceballos, G. Global distribution and conservation of marine mammals. Proc. Natl Acad. Sci. 108, 13600–13605 (2011).
- 4.
Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).
- 5.
Gaston, K. J. Ecology: rarity as double jeopardy. Nature 394, 229 (1998).
- 6.
Hughes, T. P., Bellwood, D. R., Connolly, S. R., Cornell, H. V. & Karlson, R. H. Double jeopardy and global extinction risk in corals and reef fishes. Curr. Biol. 24, 2946–2951 (2014).
- 7.
Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).
- 8.
Jain, M. et al. The importance of rare species: A trait‐based assessment of rare species contributions to functional diversity and possible ecosystem function in tall‐grass prairies. Ecol. Evolution 4, 104–112 (2014).
- 9.
Chapman, A. S., Tunnicliffe, V. & Bates, A. E. Both rare and common species make unique contributions to functional diversity in an ecosystem unaffected by human activities. Diversity Distrib. 24, 568–578 (2018).
- 10.
Winter, M., Devictor, V. & Schweiger, O. Phylogenetic diversity and nature conservation: where are we? Trends in ecology &. evolution 28, 199–204 (2013).
- 11.
Thuiller, W. et al. Conserving the functional and phylogenetic trees of life of European tetrapods. Philos. Trans. R. Soc. B: Biol. Sci. 370, 20140005 (2015).
- 12.
Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. 34, 746–758 (2019).
- 13.
Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evolution 32, 356–367 (2017).
- 14.
Cooke, R. S., Eigenbrod, F. & Bates, A. E. Ecological distinctiveness of birds and mammals at the global scale. Glob. Ecol. Conserv. 22, e00970 (2020).
- 15.
Grenié, M., Denelle, P., Tucker, C. M., Munoz, F. & Violle, C. Funrar: an R package to characterize functional rarity. Diversity Distrib. 23, 1365–1371 (2017).
- 16.
Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).
- 17.
Roman-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).
- 18.
Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).
- 19.
Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Sci. Adv. 6, eabb8458 (2020).
- 20.
Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evolution 4, 230–239 (2020).
- 21.
Elton, C. S. The nature and origin of soil-polygons in Spitsbergen. Q. J. Geol. Soc. 83, 163–1 (1927).
- 22.
Wilman, H. et al. EltonTraits 1.0: species‐level foraging attributes of the world’s birds and mammals: Ecological Archives E095‐178. Ecology 95, 2027–2027 (2014).
- 23.
Safi, K. et al. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2536–2544 (2011).
- 24.
Mazel, F. et al. Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob. Ecol. Biogeogr. 23, 836–847 (2014).
- 25.
Barnagaud, J. Y. et al. Functional biogeography of dietary strategies in birds. Glob. Ecol. Biogeogr. 28, 1004–1017 (2019).
- 26.
Cooke, R. S., Bates, A. E. & Eigenbrod, F. Global trade‐offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019).
- 27.
Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141 (2017).
- 28.
Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).
- 29.
Dutilleul, P. Spatial heterogeneity and the design of ecological field experiments. Ecology 74, 1646–1658 (1993).
- 30.
Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).
- 31.
Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).
- 32.
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).
- 33.
Leitao, R. P. et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B: Biol. Sci. 283, 20160084 (2016).
- 34.
Chapman, A. S. A., Tunnicliffe, V., Bates, A. E. & Kühn, I. Both rare and common species make unique contributions to functional diversity in an ecosystem unaffected by human activities. Diversity Distrib. 24, 568–578 (2018).
- 35.
Fleming, T. H. & Kress, W. J. The Ornaments of Life: Coevolution and Conservation in the Tropics. (University of Chicago Press, 2013).
- 36.
Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 3, e1600946 (2017).
- 37.
Wisz, M. S. et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88, 15–30 (2013).
- 38.
Birkinshaw, C. R. New Directions in Lemur Studies 189-199 (Springer, 1999).
- 39.
Federman, S. et al. Implications of lemuriform extinctions for the Malagasy flora. Proc. Natl Acad. Sci. 113, 5041–5046 (2016).
- 40.
Abrahamczyk, S., Poretschkin, C. & Renner, S. S. Evolutionary flexibility in five hummingbird/plant mutualistic systems: testing temporal and geographic matching. J. Biogeogr. 44, 1847–1855 (2017).
- 41.
Graham, N. A. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250 (2018).
- 42.
Benkwitt, C. E., Wilson, S. K. & Graham, N. A. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Global Change Biol. 25, 2619–2632 (2019).
- 43.
Cheke, A. S. An ecological history of the Mascarene Islands, with particular reference to extinctions and introductions of land ver-tebrates. In Studies of Mascarene Island birds (ed. Diamond, A. W.) 5–89 (Cambridge University Press, Cambridge, 1987).
- 44.
Mateo‐Tomás, P., Olea, P. P., Moleón, M., Selva, N. & Sánchez‐Zapata, J. A. Both rare and common species support ecosystem services in scavenger communities. Glob. Ecol. Biogeogr. 26, 1459–1470 (2017).
- 45.
Williams-Guillén, K., Perfecto, I. & Vandermeer, J. Bats limit insects in a neotropical agroforestry system. Science 320, 70–70 (2008).
- 46.
Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. 105, 17012–17017 (2008).
- 47.
Srivastava, D. S., Cadotte, M. W., MacDonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).
- 48.
Galán-Acedo, C. et al. The conservation value of human-modified landscapes for the world’s primates. Nat. Commun. 10, 152 (2019).
- 49.
Kling, M. M., Mishler, B. D., Thornhill, A. H., Baldwin, B. G. & Ackerly, D. D. Facets of phylodiversity: evolutionary diversification, divergence and survival as conservation targets. Philos. Trans. R. Soc. B 374, 20170397 (2018).
- 50.
Ricklefs, R. E. Small clades at the periphery of passerine morphological space. Am. Naturalist 165, 651–659 (2005).
- 51.
Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93 (2006).
- 52.
Lamoreux, J. F. et al. Global tests of biodiversity concordance and the importance of endemism. Nature 440, 212–214 (2006).
- 53.
Rosauer, D. F. & Jetz, W. Phylogenetic endemism in terrestrial mammals. Glob. Ecol. Biogeogr. 24, 168–179 (2015).
- 54.
Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).
- 55.
Jetz, W. et al. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 24, 919–930 (2014).
- 56.
Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246 (2018).
- 57.
Losos, J. B. & Ricklefs, R. E. Adaptation and diversification on islands. Nature 457, 830 (2009).
- 58.
Leprieur, F. et al. Plate tectonics drive tropical reef biodiversity dynamics. Nat. Commun. 7, 11461 (2016).
- 59.
Orme, C. D. L. et al. Global patterns of geographic range size in birds. PLoS Biol. 4, e208 (2006).
- 60.
Grenié, M. et al. Functional rarity of coral reef fishes at the global scale: Hotspots and challenges for conservation. Biol. Conserv. 226, 288–299 (2018).
- 61.
Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data‐deficient species. Conserv. Biol. 29, 250–259 (2015).
- 62.
Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. science 332, 53–58 (2011).
- 63.
Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. 113, 13791–13796 (2016).
- 64.
Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205 (2017).
- 65.
Harnik, P. G., Simpson, C. & Payne, J. L. Long-term differences in extinction risk among the seven forms of rarity. Proc. R. Soc. B: Biol. Sci. 279, 4969–4976 (2012).
- 66.
Bender, I. M. et al. Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Sci. Rep. 9, 1–12 (2019).
- 67.
Buytaert, W., Cuesta‐Camacho, F. & Tobón, C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob. Ecol. Biogeogr. 20, 19–33 (2011).
- 68.
Berry, L. et al. Patterns of habitat use by three threatened mammals 10 years after reintroduction into a fenced reserve free of introduced predators. Biol. Conserv. 230, 1–9 (2019).
- 69.
Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323 (2019).
- 70.
Harper, G. J., Steininger, M. K., Tucker, C. J., Juhn, D. & Hawkins, F. Fifty years of deforestation and forest fragmentation in Madagascar. Environ. Conserv. 34, 325–333 (2007).
- 71.
Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441 (2017).
- 72.
Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590 (2019).
- 73.
Cooke, R. S., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 2279 (2019).
- 74.
Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328 (2018).
- 75.
Smith, R. J., Muir, R. D., Walpole, M. J., Balmford, A. & Leader-Williams, N. Governance and the loss of biodiversity. Nature 426, 67 (2003).
- 76.
von Bieberstein, K. R. et al. Improving collaboration in the implementation of global biodiversity conventions. Conserv. Biol. 33, 821–831 (2019).
- 77.
Pimm, S. L., Jenkins, C. N. & Li, B. V. How to protect half of Earth to ensure it protects sufficient biodiversity. Sci. Adv. 4, eaat2616 (2018).
- 78.
Neeson, T. M. et al. Conserving rare species can have high opportunity costs for common species. Glob. change Biol. 24, 3862–3872 (2018).
- 79.
IUCN, S. IUCN SSC Guiding Principles on Creating Proxies of Extinct Species for Conservation Benefit. Gland, Switzerland. https://portals.iucn.org/library/sites/library/files/documents/Rep-2016-009.pdf (2016).
- 80.
Pearson, R. G. Reasons to conserve nature. Trends Ecol. Evol. 31, 366–371 (2016).
- 81.
Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 267, 1947–1952 (2000).
- 82.
Team, R. C. R: A language and environment for statistical computing. (2013).
- 83.
BirdLife. BirdLife international. http://www.birdlife.org (2019).
- 84.
Mazel, F. et al. The geography of ecological niche evolution in mammals. Curr. Biol. 27, 1369–1374 (2017).
- 85.
Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).
- 86.
Dray, S., Dufour, A. B. & Thiolouse, J. ade4. CRAN| L”(K) (2014).
- 87.
Pavoine, S., Vallet, J., Dufour, A. B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118, 391–402 (2009).
- 88.
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
- 89.
Legendre, P. & Legendre, L. Numerical ecology. 3rd English ed. Developments in environmental modelling 24 (2012).
- 90.
Bininda-Emonds, O. R. et al. The delayed rise of present-day mammals. Nature 456, 274–274 (2007).
- 91.
Fritz, S. A., Bininda‐Emonds, O. R. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).
- 92.
Kuhn, T. S., Mooers, A. Ø. & Thomas, G. H. A simple polytomy resolver for dated phylogenies. Methods Ecol. Evolution 2, 427–436 (2011).
- 93.
Jetz, W., Thomas, G., Joy, J., Hartmann, K. & Mooers, A. The global diversity of birds in space and time. Nature 491, 444 (2012).
- 94.
Prendergast, J. R., Qulnn, R. M., Lawton, J. H., Evershamt, B. C. & Glbbonst, D. W. Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365, 335–337 (1993).
- 95.
Orme, D. et al. Caper: comparative analyses of phylogenetics and evolution in R. R package version 0.5 2, 458 (2012).
- 96.
Isaac, N. J., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PloS one 2, e296 (2007).
- 97.
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
- 98.
Strona, G., Nappo, D., Boccacci, F., Fattorini, S. & San-Miguel-Ayanz, J. A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nat. Commun. 5, 4114 (2014).
- 99.
Chamberlain, S. A. & Szöcs, E. Taxize: taxonomic search and retrieval in R. F1000Research 2 (2013).
- 100.
De Mendiburu, F. Agricolae: statistical procedures for agricultural research. R package version 1 (2014).
- 101.
Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. data 3, 160067 (2016).
- 102.
UNDP. Human Development Indices and Indicators: 2018 Statistical Update. (UNDP, 2018).
- 103.
PRIO, U. UCDP/PRIO Armed Conflict Dataset v. 4-2016 from the Version 2.2-2016. (2016).
- 104.
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. data 4, 170122 (2017).
- 105.
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
- 106.
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
- 107.
Lindsay, K. et al. Preindustrial-control and twentieth-century carbon cycle experiments with the Earth System Model CESM1 (BGC). J. Clim. 27, 8981–9005 (2014).
- 108.
Scoccimarro, E. et al. Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Clim. 24, 4368–4384 (2011).
- 109.
Persechino, A., Mignot, J., Swingedouw, D., Labetoulle, S. & Guilyardi, E. Decadal predictability of the Atlantic meridional overturning circulation and climate in the IPSL-CM5A-LR model. Clim. Dyn. 40, 2359–2380 (2013).
- 110.
Watanabe, M. et al. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J. Clim. 23, 6312–6335 (2010).
- 111.
Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Modeling Earth Syst. 5, 572–597 (2013).
- 112.
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Diversity Distrib. 15, 59–69 (2009).
- 113.
Rodrigues, A. S. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640 (2004).
Comments
Something to say?
Log in or Sign up for free