- 1.
Gutiérrez, J. M. et al. Snakebite envenoming. Nat. Rev. Dis. Prim. 3, 17063 (2017).
- 2.
Harrison, R. A., Casewell, N. R., Ainsworth, S. A. & Lalloo, D. G. The time is now: a call for action to translate recent momentum on tackling tropical snakebite into sustained benefit for victims. Trans. R. Soc. Trop. Med. Hyg. 113, 835–838 (2019).
- 3.
Williams, D. J. et al. Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming. PLoS Negl. Trop. Dis. 13, e0007059 (2019).
- 4.
Casewell, N. R. et al. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc. Natl Acad. Sci. USA 111, 9205–9210 (2014).
- 5.
Tasoulis, T. & Isbister, G. K. A review and database of snake venom proteomes. Toxins 9, 290 (2017).
- 6.
Williams, D. J. et al. Ending the drought: New strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. J. Proteom. 74, 1735–1767 (2011).
- 7.
Arnold, C. Vipers, mambas and taipans: the escalating health crisis over snakebites. Nature 537, 26–28 (2016).
- 8.
Gutiérrez, J. M. Global availability of antivenoms: The relevance of public manufacturing laboratories. Toxins 11, 5 (2019).
- 9.
Casewell, N. R. et al. Pre-clinical assays predict pan-African Echis viper efficacy for a species-specific antivenom. PLoS Negl. Trop. Dis. 4, e851 (2010).
- 10.
de Silva, H. A. et al. Low-dose adrenaline, promethazine, and hydrocortisone in the prevention of acute adverse reactions to antivenom following snakebite: A randomised, double-blind, placebo-controlled trial. PLoS Med. 8, e1000435 (2011).
- 11.
Mohapatra, B. et al. Snakebite mortality in India: a nationally representative mortality survey. PLoS Negl. Trop. Dis. 5, e1018 (2011).
- 12.
Bulfone, T. C., Samuel, S. P., Bickler, P. E. & Lewin, M. R. Developing small molecule therapeutics for the initial and adjunctive treatment of snakebite. J. Trop. Med. 2018, 1–14 (2018).
- 13.
Knudsen, C. & Laustsen, A. H. Recent advances in next generation snakebite antivenoms. Trop. Med. Infect. Dis 3, 42 (2018).
- 14.
Habib, A. G., Gebi, U. I. & Onyemelukwe, G. C. Snake bite in Nigeria. Afr. J. Med. &. Med. Sci. 30, 171–178 (2001).
- 15.
Otero-Patiño, R. Epidemiological, clinical and therapeutic aspects of Bothrops asper bites. Toxicon 54, 998–1011 (2009).
- 16.
Kumar, K. G. S., Narayanan, S., Udayabhaskaran, V. & Thulaseedharan, N. K. Clinical and epidemiologic profile and predictors of outcome of poisonous snake bites – an analysis of 1,500 cases from a tertiary care center in Malabar, North Kerala, India. Int. J. Gen. Med. 11, 209–216 (2018).
- 17.
Slagboom, J., Kool, J., Harrison, R. A. & Casewell, N. R. Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise. Br. J. Haematol. 177, 947–959 (2017).
- 18.
Gutiérrez, J. M. & Rucavado, A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie 82, 841–850 (2000).
- 19.
Gutiérrez, J. M., Escalante, T., Rucavado, A. & Herrera, C. Hemorrhage caused by snake venom metalloproteinases: a journey of discovery and understanding. Toxins (Basel). 8, 93 (2016).
- 20.
Ferraz, C. R. et al. Multifunctional toxins in snake venoms and therapeutic implications: from pain to hemorrhage and necrosis. Front. Ecol. Evol. 7, 1–19 (2019).
- 21.
Howes, J.-M., Theakston, R. D. G. & Laing, G. D. Neutralization of the haemorrhagic activities of viperine snake venoms and venom metalloproteinases using synthetic peptide inhibitors and chelators. Toxicon 49, 734–739 (2007).
- 22.
Lewin, M., Samuel, S., Merkel, J. & Bickler, P. Varespladib (LY315920) appears to be a potent, broad-spectrum, inhibitor of snake venom phospholipase A2 and a possible pre-referral treatment for envenomation. Toxins 8, 248 (2016).
- 23.
Arias, A. S., Rucavado, A. & Gutiérrez, J. M. Peptidomimetic hydroxamate metalloproteinase inhibitors abrogate local and systemic toxicity induced by Echis ocellatus (saw-scaled) snake venom. Toxicon 132, 40–49 (2017).
- 24.
Rucavado, A. et al. Inhibition of local hemorrhage and dermonecrosis induced by Bothrops asper snake venom: effectiveness of early in situ administration of the peptidomimetic metalloproteinase inhibitor batimastat and the chelating agent CaNa2EDTA. Am. J. Trop. Med. Hyg. 63, 313–319 (2000).
- 25.
Ainsworth, S. et al. The paraspecific neutralisation of snake venom induced coagulopathy by antivenoms. Commun. Biol. 1, 34 (2018).
- 26.
Lewin, M. et al. Delayed LY333013 (Oral) and LY315920 (Intravenous) reverse severe neurotoxicity and rescue juvenile pigs from lethal doses of Micrurus fulvius (Eastern coral snake) venom. Toxins 10, 479 (2018).
- 27.
Lewin, M. et al. Delayed oral LY333013 rescues mice from highly neurotoxic, lethal doses of Papuan taipan (Oxyuranus scutellatus) venom. Toxins 10, 380 (2018).
- 28.
Albulescu, L.-O. et al. Preclinical validation of a repurposed metal chelator as an early-intervention therapeutic for hemotoxic snakebite. Sci. Trans. Med. 12, eaay8314 (2020).
- 29.
Wang, Y. et al. Exploration of the inhibitory potential of varespladib for snakebite envenomation. Molecules 23, 391 (2018).
- 30.
Layfield, H. J. et al. Repurposing cancer drugs batimastat and marimastat to inhibit the activity of a group I metalloprotease from the venom of the Western diamondback rattlesnake, Crotalus atrox. Toxins 12, 309 (2020).
- 31.
Rowsell, S. et al. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J. Mol. Biol. 319, 173–181 (2002).
- 32.
Warrell, D. A. & Arnett, C. The importance of bites by the saw scaled or carpet viper (Echis carinatus): Epidemiological studies in Nigeria and a review of the world. Acta Trop. 33, 307–341 (1976).
- 33.
Warrell, D. in Handbook of Clinical Toxicology of Animal Venoms and Poisons (eds White, J. & Meier, J.) pp 534–594 (CRC Press, 1995).
- 34.
Warrell, D. in Handbook of Clinical Toxicology of Animal Venoms and Poisons (eds. White, J. & Meier, J.) pp 455–492 (CRC Press, 1995).
- 35.
Still, K. et al. Multipurpose HTS Coagulation Analysis: Assay Development and Assessment of Coagulopathic Snake Venoms. Toxins 9, 382 (2017).
- 36.
Rogalski, A. et al. Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies. Toxicol. Lett. 280, 159–170 (2017).
- 37.
Slagboom, J. et al. High throughput screening and identification of coagulopathic snake venom proteins and peptides using nanofractionation and proteomics approaches. PLoS Negl. Trop. Dis. 14, e0007802 (2020).
- 38.
Winer, A., Adams, S. & Mignatti, P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol. Cancer Ther. 17, 1147–1155 (2018).
- 39.
Kim, E. Y. et al. Low-dose nafamostat mesilate in hemodialysis patients at high bleeding risk. Kidney Res. Clin. Pract. 30, 61–66 (2011).
- 40.
Kim, H. S. et al. Cardiac arrest caused by nafamostat mesilate. Kidney Res. Clin. Pract. 35, 187–189 (2016).
- 41.
Theakston, R. D. & Reid, H. A. Development of simple standard assay procedures for the characterization of snake venom. Bull. World Health Organ. 61, 949–956 (1983).
- 42.
Harrison, R. A. et al. Preclinical antivenom-efficacy testing reveals potentially disturbing deficiencies of snakebite treatment capability in East Africa. PLoS Negl. Trop. Dis. 11, e0005969 (2017).
- 43.
WHO, WHO Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins (WHO, (2018).
- 44.
Bolaños, R. Toxicity of Costa Rican snake venoms for the white mouse. Am. J. Trop. Med. Hyg. 21, 360–363 (1972).
- 45.
Villalta, M. et al. Development of a new polyspecific antivenom for snakebite envenoming in Sri Lanka: Analysis of its preclinical efficacy as compared to a currently available antivenom. Toxicon 122, 152–159 (2016).
- 46.
Mora-Obando, D. et al. Proteomic and functional profiling of the venom of Bothrops ayerbei from Cauca, Colombia, reveals striking interspecific variation with Bothrops asper venom. J. Proteom. 96, 159–172 (2014).
- 47.
Harrison, R. A. & Gutiérrez, J. M. Priority actions and progress to substantially and sustainably reduce the mortality, morbidity and socioeconomic burden of tropical snakebite. Toxins 8, 351 (2016).
- 48.
de la Rosa, G. et al. Horse immunization with short-chain consensus α-neurotoxin generates antibodies against broad spectrum of elapid venomous species. Nat. Commun. 10, 3642 (2019).
- 49.
Kini, R. M., Sidhu, S. S. & Laustsen, A. H. Biosynthetic oligoclonal antivenom (BOA) for snakebite and next-generation treatments for snakebite victims. Toxins 10, 534 (2018).
- 50.
Laustsen, A. H. et al. In vivo neutralization of dendrotoxin-mediated neurotoxicity of black mamba venom by oligoclonal human IgG antibodies. Nat. Commun. 9, 3928 (2018).
- 51.
Peterson, J. The importance of estimating the therapeutic index in the development of matrix metalloproteinase inhibitors. Cardiovasc. Res. 69, 677–687 (2006).
- 52.
Millar, A. W. et al. Results of single and repeat dose studies of the oral matrix metalloproteinase inhibitor marimastat in healthy male volunteers. Br. J. Clin. Pharmacol. 45, 21–26 (1998).
- 53.
Rosemurgy, A. et al. Marimastat in patients with advanced pancreatic cancer: a dose-finding study. Am. J. Clin. Oncol. 22, 247–252 (1999).
- 54.
Nair, A. & Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 7, 27 (2016).
- 55.
Adis R&D Profile. Varespladib. Am. J. Cardiovasc. Drugs 11, 137–143 (2011).
- 56.
Rosenson, R. S. et al. Effects of varespladib methyl on biomarkers and major cardiovascular events in acute coronary syndrome patients. J. Am. Coll. Cardiol. 56, 1079–1088 (2010).
- 57.
Abraham, E. et al. Efficacy and safety of LY315920Na/S-5920, a selective inhibitor of 14-kDa group IIA secretory phospholipase A2, in patients with suspected sepsis and organ failure. Crit. Care Med. 31, 718–728 (2003).
- 58.
Nicholls, S. J. et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: The VISTA-16 randomized clinical trial. JAMA - J. Am. Med. Assoc. 311, 252–262 (2014).
- 59.
Gutiérrez, J. M., Lewin, M. R., Williams, D. J. & Lomonte, B. Varespladib (LY315920) and methyl varespladib (LY333013) abrogate or delay lethality induced by presynaptically acting neurotoxic snake venoms. Toxins 12, 131 (2020).
- 60.
Ohtake, Y. et al. Nafamostat mesylate as anticoagulant in continuous hemofiltration and continuous hemodiafiltration. Contrib. Nephrol. 93, 215–217 (1991).
- 61.
Maiorino, R. M., Xu, Z. F. & Aposhian, H. V. Determination and metabolism of dithiol chelating agents. XVII. In humans, sodium 2,3-dimercapto-1-propanesulfonate is bound to plasma albumin via mixed disulfide formation and is found in the urine as cyclic polymeric disulfides. J. Pharmacol. Exp. Ther. 277, 375–384 (1996).
- 62.
Kosnett, M. J. The role of chelation in the treatment of arsenic and mercury poisoning. J. Med. Toxicol. 9, 347–354 (2013).
- 63.
Wagstaff, S. C., Sanz, L., Juárez, P., Harrison, R. A. & Calvete, J. J. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus. J. Proteom. 71, 609–623 (2009).
- 64.
Tan, N. H. et al. Functional venomics of the Sri Lankan Russell’s viper (Daboia russelii) and its toxinological correlations. J. Proteom. 128, 403–423 (2015).
- 65.
Pla, D. et al. Phylovenomics of Daboia russelii across the Indian subcontinent. Bioactivities and comparative in vivo neutralization and in vitro third-generation antivenomics of antivenoms against venoms from India, Bangladesh and Sri Lanka. J. Proteom. 207, 103443 (2019).
- 66.
Bradley, J. D. et al. A randomized, double-blinded, placebo-controlled clinical trial of LY333013, a selective inhibitor of group II secretory phospholipase A2, in the treatment of rheumatoid arthritis. J. Rheumatol. 32, 417–423 (2005).
- 67.
Sevenet, P. O. & Depasse, F. Clot waveform analysis: Where do we stand in 2017? Int. J. Lab. Hematol. 39, 561–568 (2017).
- 68.
Patra, A., Kalita, B., Chanda, A. & Mukherjee, A. K. Proteomics and antivenomics of Echis carinatus carinatus venom: Correlation with pharmacological properties and pathophysiology of envenomation. Sci. Rep. 7, 17119 (2017).
- 69.
Alape-Girón, A. et al. Studies on the venom proteome of Bothrops asper: perspectives and applications. Toxicon 54, 938–948 (2009).
- 70.
Calvete, J. J., Escolano, J. & Sanz, L. Snake venomics of Bitis species reveals large intragenus venom toxin composition variation: application to taxonomy of congeneric taxa. J. Proteome Res. 6, 2732–2745 (2007).
Comments
Something to say?
Log in or Sign up for free