Welcome to the IKCEST
Polariton interactions: Light matters: Studying quasiparticles that are part light, part matter

The intriguing quasiparticle the exciton-polariton is part light (photon), and part matter (exciton).

Their excitonic (matter) part confers them the ability to interact with other particles -- a property lacking to bare photons.

In theory, when confined to only two dimensions, very slow (ie, very cold) excitons should cease any interaction with one another. However in practice, this behaviour is not observed with exciton-polaritons.

In a new study by FLEET researchers at Monash University, the answer is found to lie in the 'light-like' characteristics of these quasiparticles.

This is important for future applications using polaritons in atomically-thin semiconductors, such as ultra-low energy electronics.

ENHANCED INTERACTIONS THROUGH STRONG LIGHT-MATTER COUPLING

'We sought answers to a fundamental question about exciton-polaritons not asked previously," explains lead author Dr Olivier Bleu.

"If polaritons live in two-dimensions, why is the disappearance of their interactions at slow velocities not happening in experiments, as predicted by quantum scattering theory?"

The team demonstrated that the strong-coupling between excitons and photons, together with the huge exciton-photon mass ratio, modifies the scattering behaviour expected for 'bare' two-dimensional excitons and implies that polariton interactions remain finite.

"More precisely, we showed that the regime where the interactions should vanish is not observable since it would require a sample much larger than the known universe!," explains co-author Dr Jesper Levinsen.

The results show that polaritons interact more than excitons, which contrasts with the common assumption about these key quasiparticles.

"This work sheds new light on the interactions between hybrid light-matter quasiparticles, and will allow us to deepen our understanding of these systems," says corresponding author A/Prof Meera Parish.

QUASIPARTICLES THAT ARE BOTH LIGHT AND MATTER

Exciton-polaritons form when excitons (electron-hole pairs) are strongly-coupled with light (photons) trapped in an optical cavity.

This 'split personality' gives the exciton-polariton unique properties, taking some of the characteristics of light, and some of the characteristics of matter.

Their capacity to interact is at the heart of a variety of fascinating phenomena observable in experiments and still not completely understood: ranging from polariton Bose-Einstein condensation and superfluidity to quantum optical effects.

Original Text (This is the original text for your reference.)

The intriguing quasiparticle the exciton-polariton is part light (photon), and part matter (exciton).

Their excitonic (matter) part confers them the ability to interact with other particles -- a property lacking to bare photons.

In theory, when confined to only two dimensions, very slow (ie, very cold) excitons should cease any interaction with one another. However in practice, this behaviour is not observed with exciton-polaritons.

In a new study by FLEET researchers at Monash University, the answer is found to lie in the 'light-like' characteristics of these quasiparticles.

This is important for future applications using polaritons in atomically-thin semiconductors, such as ultra-low energy electronics.

ENHANCED INTERACTIONS THROUGH STRONG LIGHT-MATTER COUPLING

'We sought answers to a fundamental question about exciton-polaritons not asked previously," explains lead author Dr Olivier Bleu.

"If polaritons live in two-dimensions, why is the disappearance of their interactions at slow velocities not happening in experiments, as predicted by quantum scattering theory?"

The team demonstrated that the strong-coupling between excitons and photons, together with the huge exciton-photon mass ratio, modifies the scattering behaviour expected for 'bare' two-dimensional excitons and implies that polariton interactions remain finite.

"More precisely, we showed that the regime where the interactions should vanish is not observable since it would require a sample much larger than the known universe!," explains co-author Dr Jesper Levinsen.

The results show that polaritons interact more than excitons, which contrasts with the common assumption about these key quasiparticles.

"This work sheds new light on the interactions between hybrid light-matter quasiparticles, and will allow us to deepen our understanding of these systems," says corresponding author A/Prof Meera Parish.

QUASIPARTICLES THAT ARE BOTH LIGHT AND MATTER

Exciton-polaritons form when excitons (electron-hole pairs) are strongly-coupled with light (photons) trapped in an optical cavity.

This 'split personality' gives the exciton-polariton unique properties, taking some of the characteristics of light, and some of the characteristics of matter.

Their capacity to interact is at the heart of a variety of fascinating phenomena observable in experiments and still not completely understood: ranging from polariton Bose-Einstein condensation and superfluidity to quantum optical effects.

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel