Welcome to the IKCEST
A review framework of how earthquakes trigger volcanic eruptions
  1. 1.

    Nunn, P. D. Lashed by sharks, pelted by demons, drowned for apostasy: the value of myths that explain geohazards in the Asia-Pacific region. Asian Geogr. 31, 59–82 (2014).

    Article  Google Scholar 

  2. 2.

    Troll, V. R. et al. Ancient oral tradition describes volcano–earthquake interaction at merapi volcano, indonesia. Geogr. Ann. Ser. A Phys. Geogr. 97, 137–166 (2015).

    Article  Google Scholar 

  3. 3.

    Taggart, D. All the mountains shake, seismic and volcanic imagery in the Old Norse Literature of Þórr. Scr. Islandica Isl.ändska Sällskapets Årsb. 68, 99–122 (2017).

    Google Scholar 

  4. 4.

    Hill, D. P., Pollitz, F. F. & Newhall, C. G. Earthquake–volcano interactions. Phys. Today 55, 41–47 (2002).

    Article  Google Scholar 

  5. 5.

    Linde, A. T. & Sacks, I. S. Triggering of volcanic eruptions. Nature 395, 888–890 (1998).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Manga, M. & Brodsky, E. Seismic triggering of eruptions in the far field: volcanoes and geysers. Annu. Rev. Earth Planet. Sci. 34, 263–291 (2006).

    ADS  CAS  Article  Google Scholar 

  7. 7.

    Bebbington, M. S. & Marzocchi, W. Stochastic models for earthquake triggering of volcanic eruptions. J. Geophys. Res. 116, B05204 (2011).

    ADS  Google Scholar 

  8. 8.

    Sawi, T. M. & Manga, M. Revisiting short-term earthquake triggered volcanism. Bull. Volcanol. 80, 57 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Koyama, M. Mechanical coupling between volcanic unrests and large earthquakes: a review of examples and mechanisms. J. Geogr. 111, 222–232 (2002).

    Article  Google Scholar 

  10. 10.

    Eggert, S. & Walter, T. R. Volcanic activity before and after large tectonic earthquakes: observations and statistical significance. Tectonophysics 471, 14–26 (2009).

    ADS  Article  Google Scholar 

  11. 11.

    Watt, S. F. L., Pyle, D. M. & Mather, T. A. The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone. Earth Planet. Sci. Lett. 277, 399–407 (2009).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Latter, J. H. The interdependence of seismic and volcanic phenomena: some space — Time relationships in seismicity and volcanism. Bull. Volcanol. 35, 127–142 (1971).

    ADS  Article  Google Scholar 

  13. 13.

    Yamashina, K. & Nakamura, K. Correlations between tectonic earthquakes and volcanic activity of Izu-Oshima Volcano, Japan. J. Volcanol. Geotherm. Res. 4, 233–250 (1978).

    ADS  Article  Google Scholar 

  14. 14.

    Ebmeier, S. K. et al. Shallow earthquake inhibits unrest near Chiles–Cerro Negro volcanoes, Ecuador–Colombian border. Earth Planet. Sci. Lett. 450, 283–291 (2016).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    Farías, C. & Basualto, D. Reactivating and calming volcanoes: the 2015 MW 8.3 Illapel megathrust strike. Geophys. Res. Lett. 47, 1–10 (2020).

    Article  Google Scholar 

  16. 16.

    Bonali, F. L., Tibaldi, A., Corazzato, C., Tormey, D. R. & Lara, L. E. Quantifying the effect of large earthquakes in promoting eruptions due to stress changes on magma pathway: the Chile case. Tectonophysics 583, 54–67 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    Avouris, D. M., Carn, S. A. & Waite, G. P. Triggering of volcanic degassing by large earthquakes. Geology 45, G39074.1 (2017).

    Article  Google Scholar 

  18. 18.

    MacGregor, A. G. Prediction in relation to seismo-volcanic phenomena in the caribbean volcanic arc. Bull. Volcanol. 8, 69–86 (1949).

    ADS  Article  Google Scholar 

  19. 19.

    Yokoyama, I. Volcanic eruptions triggered by tectonic earthquakes. Geophys. Bull. Hokkaido Univ. 25, 129–139 (1971).

    Google Scholar 

  20. 20.

    Tilling, R. I. et al. Earthquakes and related catastrophic events, Island of Hawaii, November 29, 1975; A preliminary report. Geol. Surv. https://doi.org/10.3133/cir740 (1976).

  21. 21.

    Barquero, R., Lesage, P., Metaxian, J. P., Creusot, A. & Fernández, M. La crisis sismica en el Volcán Irazú en 1991 (Costa Rica). Rev. Geol. Amer. Central 18, 5–18 (1995).

    Google Scholar 

  22. 22.

    Carbone, D., Jousset, P. & Musumeci, C. Gravity “steps” at Mt. Etna volcano (Italy): Instrumental effects or evidences of earthquake-triggered magma density changes? Geophys. Res. Lett. 36, (2009).

  23. 23.

    Cannata, A. et al. Response of Mount Etna to dynamic stresses from distant earthquakes. J. Geophys. Res. Solid Earth 115, 1–18 (2010).

    Google Scholar 

  24. 24.

    Yamazaki, K., Teraishi, M., Komatsu, S., Sonoda, Y. & Kano, Y. On the possibility of the 2011 Tohoku-oki earthquake reactivating Shinmoe-dake volcano, southwest Japan: Insights from strain data measured in vaults. Nat. Hazards Earth Syst. Sci. 11, 2655–2661 (2011).

    ADS  Article  Google Scholar 

  25. 25.

    Mora-Stock, C. et al. Comparison of seismic activity for Llaima and Villarrica volcanoes prior to and after the Maule 2010 earthquake. Int. J. Earth Sci. 103, 2015–2028 (2014).

    Article  Google Scholar 

  26. 26.

    Harris, A. J. L. & Ripepe, M. Regional earthquake as a trigger for enhanced volcanic activity: evidence from MODIS thermal data. Geophys. Res. Lett. 34, 1–6 (2007).

    Google Scholar 

  27. 27.

    Delle Donne, D., Harris, A. J. L., Ripepe, M. & Wright, R. Earthquake-induced thermal anomalies at active volcanoes. Geology 38, 771–774 (2010).

    ADS  Article  Google Scholar 

  28. 28.

    Hill-Butler, C., Blackett, M., Wright, R. & Trodd, N. The co-incidence of earthquakes and volcanoes: assessing global volcanic radiant flux responses to earthquakes in the 21st century. J. Volcanol. Geotherm. Res. 393, 106770 (2020).

    CAS  Article  Google Scholar 

  29. 29.

    La Femina, P. C., Connor, C. B., Hill, B. E., Strauch, W. & Saballos, J. A. Magma–tectonic interactions in Nicaragua: the 1999 seismic swarm and eruption of Cerro Negro volcano. J. Volcanol. Geotherm. Res. 137, 187–199 (2004).

    ADS  Article  CAS  Google Scholar 

  30. 30.

    Higgins, M. D. The Cascadia megathrust earthquake of 1700 may have rejuvenated an isolated basalt volcano in western Canada: age and petrographic evidence. J. Volcanol. Geotherm. Res. 179, 149–156 (2009).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Allan, A. S. R., Wilson, C. J. N., Millet, M. A. & Wysoczanski, R. J. The invisible hand: tectonic triggering and modulation of a rhyolitic supereruption. Geology 40, 563–566 (2012).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Barrientos, S. E. Large thrust earthquakes and volcanic eruptions. Pure Appl. Geophys. 142, 225–237 (1994).

    ADS  Article  Google Scholar 

  33. 33.

    Walter, T. R. & Amelung, F. Volcanic eruptions following M ≥ 9 megathrust earthquakes: implications for the Sumatra-Andaman volcanoes. Geology 35, 539–542 (2007).

    ADS  Article  Google Scholar 

  34. 34.

    Walter, T. R. et al. Simultaneous magma and gas eruptions at three volcanoes in southern Italy: an earthquake trigger? Geology 37, 251–254 (2009).

    ADS  Article  Google Scholar 

  35. 35.

    Hamling, I. J. & Kilgour, G. Goldilocks conditions required for earthquakes to trigger basaltic eruptions: Evidence from the 2015 Ambrym eruption. Sci. Adv. 6, eaaz5261 (2020).

  36. 36.

    Carniel, R., Di Cecca, M. & Rouland, D. Ambrym, Vanuatu (July–August 2000): spectral and dynamical transitions on the hours-to-days timescale. J. Volcanol. Geotherm. Res. 128, 1–13 (2003).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Ortiz, R. et al. Villarrica volcano (Chile): characteristics of the volcanic tremor and forecasting of small explosions by means of a material failure method. J. Volcanol. Geotherm. Res. 128, 247–259 (2003).

    ADS  CAS  Article  Google Scholar 

  38. 38.

    Tárraga, M. et al. Dynamical parameter analysis of continuous seismic signals of Popocatépetl volcano (Central Mexico): a case of tectonic earthquakes influencing volcanic activity. Acta Geophys. 60, 664–681 (2012).

    ADS  Article  Google Scholar 

  39. 39.

    Jousset, P. et al. Signs of magma ascent in LP and VLP seismic events and link to degassing: an example from the 2010 explosive eruption at Merapi volcano, Indonesia. J. Volcanol. Geotherm. Res. 261, 171–192 (2013).

    ADS  CAS  Article  Google Scholar 

  40. 40.

    Carr, B. B., Clarke, A. B. & de’ Michieli Vitturi, M. Earthquake induced variations in extrusion rate: a numerical modeling approach to the 2006 eruption of Merapi Volcano (Indonesia). Earth Planet. Sci. Lett. 482, 377–387 (2018).

    ADS  CAS  Article  Google Scholar 

  41. 41.

    Prejean, S. G. et al. Remotely triggered seismicity on the United States West Coast following the Mw 7.9 Denali fault earthquake. Bull. Seismol. Soc. Am. 94, S348–S359 (2004).

    Article  Google Scholar 

  42. 42.

    Moran, S. C., Power, J. A., Stihler, S. D., Sánchez, J. J. & Caplan-Auerbach, J. Earthquake triggering at Alaskan volcanoes following the 3 November 2002 Denali fault earthquake. Bull. Seismol. Soc. Am. 94, S300–S309 (2004).

    Article  Google Scholar 

  43. 43.

    Yukutake, Y. et al. Remotely-triggered seismicity in the Hakone volcano following the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63, 737–740 (2011).

    ADS  Article  Google Scholar 

  44. 44.

    Farías, C., Lupi, M., Fuchs, F. & Miller, S. A. Seismic activity of the Nevados de Chillán volcanic complex after the 2010 Mw8.8 Maule, Chile, earthquake. J. Volcanol. Geotherm. Res. 283, 116–126 (2014).

    ADS  Article  CAS  Google Scholar 

  45. 45.

    Lin, C. H. Dynamic triggering of volcano drumbeat-like seismicity at the Tatun volcano group in Taiwan. Geophys. J. Int. 210, 354–359 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Cigolini, C., Laiolo, M. & Coppola, D. Earthquake – volcano interactions detected from radon degassing at Stromboli (Italy). Earth Planet. Sci. Lett. 257, 511–525 (2007).

    ADS  CAS  Article  Google Scholar 

  47. 47.

    Gresse, M., Vandemeulebrouck, J., Byrdina, S., Chiodini, G. & Bruno, P. P. Changes in CO2 diffuse degassing induced by the passing of seismic waves. J. Volcanol. Geotherm. Res. 320, 12–18 (2016).

    ADS  CAS  Article  Google Scholar 

  48. 48.

    Madonia, P., Cusano, P., Diliberto, I. S. & Cangemi, M. Thermal anomalies in fumaroles at Vulcano island (Italy) and their relationship with seismic activity. Phys. Chem. Earth A/B/C 63, 160–169 (2013).

    ADS  Article  Google Scholar 

  49. 49.

    Takada, Y. & Fukushima, Y. Volcanic subsidence triggered by the 2011 Tohoku earthquake in Japan. Nat. Geosci. 6, 637–641 (2013).

    ADS  CAS  Article  Google Scholar 

  50. 50.

    Pritchard, M. E., Jay, J. A., Aron, F., Henderson, S. T. & Lara, L. E. Subsidence at southern Andes volcanoes induced by the 2010 Maule, Chile earthquake. Nat. Geosci. 6, 632–636 (2013).

    ADS  CAS  Article  Google Scholar 

  51. 51.

    Marler, G. D. & White, D. E. Seismic geyser and its bearing on the origin and evolution of geysers and hot springs of Yellowstone National Park. Geol. Soc. Am. Bull. 86, 749 (1975).

    ADS  Article  Google Scholar 

  52. 52.

    Hill, D. P. et al. Seismicity remotely triggered by the magnitude 7.3 Landers, California, Earthquake. Science 260, 1617–1623 (1993).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Husen, S., Taylor, R., Smith, R. B. & Healser, H. Changes in geyser eruption behavior and remotely triggered seismicity in Yellowstone National Park produced by the 2002 M 7.9 Denali fault earthquake, Alaska. Geology 32, 537 (2004).

    ADS  Article  Google Scholar 

  54. 54.

    Rouwet, D., Mora-Amador, R., Ramírez-Umaña, C. J., González, G. & Inguaggiato, S. Dynamic fluid recycling at Laguna Caliente (Poás, Costa Rica) before and during the 2006 - ongoing phreatic eruption cycle (2005-10). In Geochemistry and Geophysics of Active Volcanic Lakes (eds Ohba, T., Capaccioni, B. & Caudron, C.) (The Geological Society of London, 2016).

  55. 55.

    Hurwitz, S. & Manga, M. The fascinating and complex dynamics of geyser eruptions. Annu. Rev. Earth Planet. Sci. 45, 31–59 (2017).

    ADS  CAS  Article  Google Scholar 

  56. 56.

    Nishimura, T. Triggering of volcanic eruptions by large earthquakes. Geophys. Res. Lett. 44, 7750–7756 (2017).

    ADS  Article  Google Scholar 

  57. 57.

    Marzocchi, W. Remote seismic influence on large explosive eruptions. J. Geophys. Res. 107, EPM 6-1–EPM 6-7 (2002).

  58. 58.

    Alam, M. & Kimura, M. Statistical analysis of time-distance relationship between volcanic eruptions and great earthquakes in Japan. Earth Planets Space 56, 179–192 (2004).

    ADS  Article  Google Scholar 

  59. 59.

    Manga, M. et al. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Rev. Geophys. 50, (2012).

  60. 60.

    Mazzini, A. & Etiope, G. Mud volcanism: an updated review. Earth-Sci. Rev. 168, 81–112 (2017).

    ADS  CAS  Article  Google Scholar 

  61. 61.

    Marzocchi, W., Casarotti, E. & Piersanti, A. Modeling the stress variations induced by great earthquakes on the largest volcanic eruptions of the 20th century. J. Geophys. Res. Solid Earth 107, ESE 13-1–ESE 13-8 (2002).

  62. 62.

    West, M., Sánchez, J. J. & McNutt, S. R. Periodically triggered seismicity at Mount Wrangell, Alaska, after the Sumatra Earthquake. Science 308, 1144–1146 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Wang, C.‐Y. & Manga, M. Hydrologic responses to earthquakes and a general metric. Geofluids 10, 206–216 (2010).

    Article  Google Scholar 

  64. 64.

    Sulpizio, R. & Massaro, S. Influence of stress field changes on eruption initiation and dynamics: a review. Front. Earth Sci. 5, 1–11 (2017).

    Google Scholar 

  65. 65.

    Steacy, S., Gomberg, J. & Cocco, M. Introduction to special section: stress transfer, earthquake triggering, and time-dependent seismic hazard. J. Geophys. Res. Solid Earth 110, 1–12 (2005).

    Google Scholar 

  66. 66.

    Nakamura, K. Volcano structure and possible mechanical correlation between volcanic eruptions and earthquakes. Bull. Volcanol. Soc. Jpn. Second Ser. 20, 229–240 (1975).

    Google Scholar 

  67. 67.

    Nostro, C., Stein, R. S., Cocco, M., Belardinelli, M. E. & Marzocchi, W. Two-way coupling between Vesuvius eruptions and southern Apennine earthquakes, Italy, by elastic stress transfer. J. Geophys. Res. Solid Earth 103, 24487–24504 (1998).

    Article  Google Scholar 

  68. 68.

    Díez, M., La Femina, P. C., Connor, C. B., Strauch, W. & Tenorio, V. Evidence for static stress changes triggering the 1999 eruption of Cerro Negro Volcano, Nicaragua and regional aftershock sequences. Geophys. Res. Lett. 32, 1–4 (2005).

    Article  Google Scholar 

  69. 69.

    Walter, T. R. & Amelung, F. Volcano-earthquake interaction at Mauna Loa volcano, Hawaii. J. Geophys. Res. 111, B05204 (2006).

    ADS  Google Scholar 

  70. 70.

    Walter, T. R. How a tectonic earthquake may wake up volcanoes: Stress transfer during the 1996 earthquake–eruption sequence at the Karymsky Volcanic Group, Kamchatka. Earth Planet. Sci. Lett. 264, 347–359 (2007).

    ADS  CAS  Article  Google Scholar 

  71. 71.

    Wang, F., Kang, S. Z., Zhao, W. Y. & Min, W. Influence of the March 11, 2011 Mw 9.0 Tohoku-oki earthquake on regional volcanic activities. Chin. Sci. Bull. 56, 2077–2081 (2011).

    CAS  Article  Google Scholar 

  72. 72.

    Chesley, C., La Femina, P. C., Puskas, C. & Kobayashi, D. The 1707 M w 8.7 Hoei earthquake triggered the largest historical eruption of Mt. Fuji. Geophys. Res. Lett. 39, 2012GL053868 (2012).

    Article  Google Scholar 

  73. 73.

    Bonali, F. L. Earthquake-induced static stress change on magma pathway in promoting the 2012 Copahue eruption. Tectonophysics 608, 127–137 (2013).

    ADS  Article  Google Scholar 

  74. 74.

    Ozawa, T., Fujita, E. & Ueda, H. Crustal deformation associated with the 2016 Kumamoto Earthquake and its effect on the magma system of Aso volcano. Earth, Planets Space 68 (2016).

  75. 75.

    Gregg, P. M. et al. Stress triggering of the 2005 eruption of Sierra Negra Volcano, Galápagos. Geophys. Res. Lett. 45, 288–13,297 (2018).

    Article  Google Scholar 

  76. 76.

    Shimomura, Y., Nishimura, T. & Sato, H. Bubble growth processes in magma surrounded by an elastic medium. J. Volcanol. Geotherm. Res. 155, 307–322 (2006).

    ADS  CAS  Article  Google Scholar 

  77. 77.

    Ichihara, M. & Nishimura, T. Pressure impulses generated by bubbles interacting with ambient perturbation. In Extreme Environmental Events: Complexity in Forecasting and Early Warning (ed. Meyers, R. A.) 731–752 (Springer, 2009).

  78. 78.

    Lupi, M. & Miller, S. A. Short-lived tectonic switch mechanism for long-term pulses of volcanic activity after mega-thrust earthquakes. Solid Earth 5, 13–24 (2014).

    ADS  Article  Google Scholar 

  79. 79.

    Pérez-Flores, P. et al. The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile. J. Struct. Geol. 104, 142–158 (2017).

    ADS  Article  Google Scholar 

  80. 80.

    Kimura, M. Significant eruptive activities related to large interplate earthquakes in the northwestern Pacific margin. J. Phys. Earth 26, S557–S570 (1978).

    Article  Google Scholar 

  81. 81.

    McNutt, S. R. & Beavan, R. J. Eruptions of Pavlof Volcano and their possible modulation by ocean load and tectonic stresses. J. Geophys. Res. Solid Earth 92, 11509–11523 (1987).

    Article  Google Scholar 

  82. 82.

    Kimura, M. Relationship between volcanic eruption and large earthquakes in the vicinity of Japan. Annu. Rev. Fluid Mech. 37, 293–317 (1994).

    Google Scholar 

  83. 83.

    Bautista, B. C. et al. Relationship of regional and local structures to Mount Pinatubo activity. In Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines (eds Newhall, C. G. & Punongbayan, R. S.) 351–370 (Philippine Institute of Volcanology and Seismology, 1996).

  84. 84.

    Rikitake, T. & Sato, R. Up-squeezing of magma under tectonic stress. J. Phys. Earth 37, 303–311 (1989).

    Article  Google Scholar 

  85. 85.

    Jónsson, S. Stress interaction between magma accumulation and trapdoor faulting on Sierra Negra volcano, Galápagos. Tectonophysics 471, 36–44 (2009).

    ADS  Article  Google Scholar 

  86. 86.

    Maccaferri, F., Rivalta, E., Passarelli, L. & Aoki, Y. On the mechanisms governing dike arrest: Insight from the 2000 Miyakejima dike injection. Earth Planet. Sci. Lett. 434, 64–74 (2016).

    ADS  CAS  Article  Google Scholar 

  87. 87.

    Xu, W., Jónsson, S., Corbi, F. & Rivalta, E. Graben formation and dike arrest during the 2009 Harrat Lunayyir dike intrusion in Saudi Arabia: insights from InSAR, stress calculations and analog experiments. J. Geophys. Res. Solid Earth 121, 2837–2851 (2016).

    ADS  Article  Google Scholar 

  88. 88.

    Nur, A. & Mavko, G. Postseismic viscoelastic rebound. Science 183, 204–206 (1974).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Pollitz, F. F. Postseismic relaxation theory on the spherical Earth. Bull. Seismol. Soc. Am. 82, 422–453 (1992).

    Google Scholar 

  90. 90.

    Hill, D. P. & Prejean, S. G. Dynamic triggering. In Treatise on Geophysics (ed. Schubert, G.) 274–304 (Elsevier B.V., 2015).

  91. 91.

    Lay, T. & Wallace, T. C. Modern Global Seismology (Academic Press, 1995).

  92. 92.

    Gomberg, J., Reasenberg, P. A., Bodin, P. & Harris, R. A. Earthquake triggering by seismic waves following the landers and hector mine earthquakes. Nature 411, 462–466 (2001).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Young, F. R. Cavitation (Imperial College Press, 1989).

  94. 94.

    Crews, J. B. & Cooper, C. A. Experimental evidence for seismically initiated gas bubble nucleation and growth in groundwater as a mechanism for coseismic borehole water level rise and remotely triggered seismicity. J. Geophys. Res. Solid Earth 119, 7079–7091 (2014).

  95. 95.

    Shea, T. Bubble nucleation in magmas: a dominantly heterogeneous process? J. Volcanol. Geotherm. Res. 343, 155–170 (2017).

    ADS  CAS  Article  Google Scholar 

  96. 96.

    Mangan, M. & Sisson, T. Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet. Sci. Lett. 183, 441–455 (2000).

    ADS  CAS  Article  Google Scholar 

  97. 97.

    Hurwitz, S. & Navon, O. Bubble nucleation in rhyolitic melts: Experiments at high pressure, temperature, and water content. Earth Planet. Sci. Lett. 122, 267–280 (1994).

    ADS  CAS  Article  Google Scholar 

  98. 98.

    Carey, R. J. et al. Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema’uma’u Overlook vent, Kīlauea, Hawai’i, USA. J. Geophys. Res. Solid Earth 117 (2012).

  99. 99.

    Eller, A. I. & Flynn, H. G. Rectified diffusion during nonlinear pulsations of cavitation bubbles. J. Acoust. Soc. Am. 37, 493–503 (1965).

    ADS  MathSciNet  Article  Google Scholar 

  100. 100.

    Sturtevant, B., Kanamori, H. & Brodsky, E. E. Seismic triggering by rectified diffusion in geothermal systems. J. Geophys. Res. Solid Earth 101, 25269–25282 (1996).

    Article  Google Scholar 

  101. 101.

    Brodsky, E. E., Sturtevant, B. & Kanamori, H. Earthquakes, volcanoes, and rectified diffusion. J. Geophys. Res. Solid Earth 103, 23827–23838 (1998).

    Article  Google Scholar 

  102. 102.

    Ichihara, M. & Brodsky, E. E. A limit on the effect of rectified diffusion in volcanic systems. Geophys. Res. Lett. 33, L02316 (2006).

    ADS  Article  Google Scholar 

  103. 103.

    Lautze, N. C., Sisson, T. W., Mangan, M. T. & Grove, T. L. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas. Contrib. Mineral. Petrol. 161, 331–347 (2011).

    ADS  CAS  Article  Google Scholar 

  104. 104.

    Masotta, M. & Keppler, H. A new hydrothermal moissanite cell apparatus for optical in-situ observations at high pressure and high temperature, with applications to bubble nucleation in silicate melts. Am. Mineral. 102, 2022–2031 (2017).

    ADS  Article  Google Scholar 

  105. 105.

    Igualada-Villodre, E., Medina-Palomo, A., Vega-Martínez, P. & Rodríguez-Rodríguez, J. Transient effects in the translation of bubbles insonated with acoustic pulses of finite duration. J. Fluid Mech. 836, 649–693 (2018).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  106. 106.

    Sahagian, D. L. & Proussevitch, A. A. Bubbles in volcanic systems. Nature 359, 485 (1992).

    ADS  Article  Google Scholar 

  107. 107.

    Linde, A. T., Sacks, I. S., Johnston, M. J. S., Hill, D. P. & Bilham, R. G. Increased pressure from rising bubbles as a mechanism for remotely triggered seismicity. Nature 371, 408–410 (1994).

    ADS  Article  Google Scholar 

  108. 108.

    Czekaluk, E. B. Osnovy piezometrii zalegei nefti i gaza (in Russian). Gostechizdat (1961).

  109. 109.

    Steinberg, G. S., Steinberg, A. S. & Merzhanov, A. G. Fluid mechanism of pressure growth in volcanic (magmatic) systems. Mod. Geol. 13, 257–265 (1989).

    Google Scholar 

  110. 110.

    Bagdassarov, N. Pressure and volume changes in magmatic systems due to the vertical displacement of compressible materials. J. Volcanol. Geotherm. Res. 63, 95–100 (1994).

    ADS  Article  Google Scholar 

  111. 111.

    Pyle, D. M. & Pyle, D. L. Bubble migration and the initiation of volcanic eruptions. J. Volcanol. Geotherm. Res. 67, 227–232 (1995).

    ADS  CAS  Article  Google Scholar 

  112. 112.

    Woith, H. et al. Heterogeneous response of hydrogeological systems to the Izmit and Düzce (Turkey) earthquakes of 1999. Hydrogeol. J. 11, 113–121 (2003).

    ADS  CAS  Article  Google Scholar 

  113. 113.

    Iwata, S., Yamada, Y., Takashima, T. & Mori, H. Pressure-oscillation defoaming for viscoelastic fluid. J. Nonnewton. Fluid Mech. 151, 30–37 (2008).

    CAS  MATH  Article  Google Scholar 

  114. 114.

    De Corato, M., Dimakopoulos, Y. & Tsamopoulos, J. The rising velocity of a slowly pulsating bubble in a shear-thinning fluid. Phys. Fluids 31, 083103 (2019).

  115. 115.

    Namiki, A., Rivalta, E., Woith, H. & Walter, T. R. Sloshing of a bubbly magma reservoir as a mechanism of triggered eruptions. J. Volcanol. Geotherm. Res. 320, 156–171 (2016).

    ADS  CAS  Article  Google Scholar 

  116. 116.

    Miles, J. W. On the sloshing of liquid in a cylindrical tank. Report from The Ramo-Wooldridge Corporation, Cruided Missile Research Division, Aeromechanics Section (1956).

  117. 117.

    Housner, G. W. Dynamic pressures on accelerated fluid containers. Bull. Seismol. Soc. Am. 47, 15–35 (1957).

  118. 118.

    Abramson, H. N. The Dynamic Behavior of Liquids in Moving Containers Vol. SP-106 (National Aeronautics and Space Administration, 1966).

  119. 119.

    Namiki, A. et al. Volcanic activities triggered or inhibited by resonance of volcanic edifices to large earthquakes. Geology 47, 67–70 (2018).

    ADS  Article  Google Scholar 

  120. 120.

    Browne, P. R. & Lawless, J. Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere. Earth-Sci. Rev. 52, 299–331 (2001).

    ADS  Article  Google Scholar 

  121. 121.

    Peng, Z., Hill, D. P., Shelly, D. R. & Aiken, C. Remotely triggered microearthquakes and tremor in central California following the 2010 Mw 8.8 Chile earthquake. Geophys. Res. Lett. 37 (2010).

  122. 122.

    Jay, J. A. et al. Shallow seismicity, triggered seismicity, and ambient noise tomography at the long-dormant Uturuncu Volcano, Bolivia. Bull. Volcanol. 74, 817–837 (2012).

    ADS  Article  Google Scholar 

  123. 123.

    Surve, G. & Mohan, G. Possible evidence of remotely triggered and delayed seismicity due to the 2001 Bhuj earthquake (Mw = 7.6) in western India. Nat. Hazards 64, 299–310 (2012).

    Article  Google Scholar 

  124. 124.

    Drake, B. D. et al. Evolution of a dynamic paleo-hydrothermal system at Mangatete, Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 282, 19–35 (2014).

    ADS  CAS  Article  Google Scholar 

  125. 125.

    Kosuga, M. Seismic activity near the Moriyoshi-zan volcano in Akita Prefecture, northeastern Japan: Implications for geofluid migration and a midcrustal geofluid reservoir Geofluid processes in subduction zones and mantle dynamics. Earth Planets Space 66, 1–16 (2014).

    ADS  Article  Google Scholar 

  126. 126.

    Hurwitz, S., Sohn, R. A., Luttrell, K. & Manga, M. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather. J. Geophys. Res. Solid Earth 119, 1718–1737 (2014).

    ADS  Article  Google Scholar 

  127. 127.

    Lin, C. H. Probable dynamic triggering of phreatic eruption in the Tatun volcano group of Taiwan. J. Asian Earth Sci. 149, 78–85 (2017).

    ADS  Article  Google Scholar 

  128. 128.

    Girault, F. et al. Persistent CO2 emissions and hydrothermal unrest following the 2015 earthquake in Nepal. Nat. Commun. 9, 2956 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. 129.

    Peng, Z. et al. Remote triggering of microearthquakes and tremor in New Zealand following the 2016 Mw 7.8 Kaikōura earthquake. Bull. Seismol. Soc. Am. 108, 1784–1793 (2018).

    Article  Google Scholar 

  130. 130.

    Loame, R. C. et al. Using paleoseismology and tephrochronology to reconstruct fault rupturing and hydrothermal activity since c. 40 ka in Taupo Rift, New Zealand. Quat. Int. 500, 52–70 (2019).

    Article  Google Scholar 

  131. 131.

    Saade, M. et al. Evidence of reactivation of a hydrothermal system from seismic anisotropy changes. Nat. Commun. 10, 1–8 (2019).

    ADS  CAS  Article  Google Scholar 

  132. 132.

    Farías, C. & Galván, B. Numerical wave propagation study of the unusual response of Nevados de Chillán volcano to two aftershocks of the 2010 MW = 8.8 Maule earthquake. J. Volcanol. Geotherm. Res. 389, 106735 (2020).

    Article  CAS  Google Scholar 

  133. 133.

    Revil, A. et al. Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self-potential, soil temperature and soil CO2 concentration measurements. Geophys. J. Int. 186, 1078–1094 (2011).

    ADS  CAS  Article  Google Scholar 

  134. 134.

    Vargas, C. A. et al. Breathing of the Nevado del Ruiz volcano reservoir, Colombia, inferred from repeated seismic tomography. Sci. Rep. 7, 8–13 (2017).

    Article  Google Scholar 

  135. 135.

    Healy, J., Lloyd, E. F., Banwell, C. J. & Adams, R. D. Volcanic eruption on Raoul Island, November 1964. Nature 205, 743–745 (1965).

    ADS  Article  Google Scholar 

  136. 136.

    Christenson, B. W. et al. Hazards from hydrothermally sealed volcanic conduits. EOS Trans. Am. Geophys. Union 88, 53–55 (2007).

    ADS  Article  Google Scholar 

  137. 137.

    Lupi, M. et al. Regional earthquakes followed by delayed ground uplifts at Campi Flegrei Caldera, Italy: Arguments for a causal link. Earth Planet. Sci. Lett. 474, 436–446 (2017).

    ADS  CAS  Article  Google Scholar 

  138. 138.

    Jolly, A. D. On the shallow volcanic response to remote seismicity. Geology 47, 95–96 (2019).

    ADS  Article  Google Scholar 

  139. 139.

    Elkhoury, J. E., Brodsky, E. E. & Agnew, D. C. Seismic waves increase permeability. Nature 441, 1135–1138 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    Wang, C. -Y. & Manga, M. Earthquakes and Water Vol. 114 (Springer, 2009).

  141. 141.

    Rojstaczer, S., Wolf, S. & Michel, R. Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature 373, 237–239 (1995).

    ADS  CAS  Article  Google Scholar 

  142. 142.

    Manga, M., Brodsky, E. E. & Boone, M. Response of streamflow to multiple earthquakes. Geophys. Res. Lett. 30 (2003).

  143. 143.

    Rojstaczer, S. & Wolf, S. Permeability changes associated with large earthquakes: an example from Loma Prieta, California. Geology 20, 211–214 (1992).

    ADS  Article  Google Scholar 

  144. 144.

    Roeloffs, E. A. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J. Geophys. Res. Solid Earth 103, 869–889 (1998).

    Article  Google Scholar 

  145. 145.

    Kocharyan, G. G. et al. Hydrologic response of underground reservoirs to seismic vibrations. Izv. Phys. Solid Earth 47, 1071–1082 (2011).

    ADS  Article  Google Scholar 

  146. 146.

    Yan, R., Woith, H. & Wang, R. Groundwater level changes induced by the 2011 Tohoku earthquake in China mainland. Geophys. J. Int. 199, 533–548 (2014).

    ADS  Article  Google Scholar 

  147. 147.

    Weaver, K. C. et al. Seismological and hydrogeological controls on New Zealand-wide groundwater level changes induced by the 2016 M w 7.8 Kaikōura earthquake. Geofluids 2019, 1–18 (2019).

    Article  Google Scholar 

  148. 148.

    Mogi, K., Mochizuki, H. & Kurokawa, Y. Temperature changes in an artesian spring at Usami in the Izu Peninsula (Japan) and their relation to earthquakes. Tectonophysics 159, 95–108 (1989).

    ADS  Article  Google Scholar 

  149. 149.

    Demezhko, D. Y., Yurkov, A. K., Outkin, V. I. & Shchapov, V. A. Temperature changes in the KUN-1 borehole, Kunashir Island, induced by the Tohoku Earthquake (March 11, 2011, M = 9.0). Dokl. Earth Sci. 445, 883–887 (2012).

    ADS  CAS  Article  Google Scholar 

  150. 150.

    He, A. & Singh, R. P. Coseismic groundwater temperature response associated with the Wenchuan earthquake. Pure Appl. Geophys. 177, 109–120 (2020).

    ADS  Article  Google Scholar 

  151. 151.

    Mellors, R., Kilb, D., Aliyev, A., Gasanov, A. & Yetirmishli, G. Correlations between earthquakes and large mud volcano eruptions. J. Geophys. Res. Solid Earth 112 (2007).

  152. 152.

    Manga, M., Brumm, M. & Rudolph, M. L. Earthquake triggering of mud volcanoes. Mar. Pet. Geol. 26, 1785–1798 (2009).

    Article  Google Scholar 

  153. 153.

    Bonini, M., Rudolph, M. L. & Manga, M. Long- and short-term triggering and modulation of mud volcano eruptions by earthquakes. Tectonophysics 672–673, 190–211 (2016).

    ADS  Article  Google Scholar 

  154. 154.

    Christenson, B. W. et al. Cyclic processes and factors leading to phreatic eruption events: insights from the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand. J. Volcanol. Geotherm. Res. 191, 15–32 (2010).

    ADS  CAS  Article  Google Scholar 

  155. 155.

    Heap, M. J. et al. A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand). J. Volcanol. Geotherm. Res. 332, 88–108 (2017).

    ADS  CAS  Article  Google Scholar 

  156. 156.

    Brodsky, E. E., Roeloffs, E., Woodcock, D., Gall, I. & Manga, M. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res. 108, 2390 (2003).

    ADS  Article  Google Scholar 

  157. 157.

    Candela, T., Brodsky, E. E., Marone, C. & Elsworth, D. Laboratory evidence for particle mobilization as a mechanism for permeability enhancement via dynamic stressing. Earth Planet. Sci. Lett. 392, 279–291 (2014).

    ADS  CAS  Article  Google Scholar 

  158. 158.

    Candela, T., Brodsky, E. E., Marone, C. & Elsworth, D. Flow rate dictates permeability enhancement during fluid pressure oscillations in laboratory experiments. J. Geophys. Res. Solid Earth 120, 2037–2055 (2015).

    ADS  Article  Google Scholar 

  159. 159.

    Barbosa, N. D., Hunziker, J., Lissa, S., Saenger, E. H. & Lupi, M. Fracture unclogging: a numerical study of seismically induced viscous shear stresses in fluid-saturated fractured rocks. J. Geophys. Res. Solid Earth 124, 11705–11727 (2019).

    ADS  Article  Google Scholar 

  160. 160.

    Shi, Y., Liao, X., Zhang, D. & Liu, C. Seismic waves could decrease the permeability of the shallow crust. Geophys. Res. Lett. 46, 6371–6377 (2019).

    ADS  Article  Google Scholar 

  161. 161.

    Faoro, I., Elsworth, D. & Marone, C. Permeability evolution during dynamic stressing of dual permeability media. J. Geophys. Res. Solid Earth 117 (2012).

  162. 162.

    Wang, C.-Y., Liao, X., Wang, L.-P., Wang, C.-H. & Manga, M. Large earthquakes create vertical permeability by breaching aquitards. Water Resour. Res. 52, 5923–5937 (2016).

    ADS  Article  Google Scholar 

  163. 163.

    Shokouhi, P. et al. Dynamic stressing of naturally fractured rocks: on the relation between transient changes in permeability and elastic wave velocity. Geophys. Res. Lett. 47, 1–10 (2020).

    Article  Google Scholar 

  164. 164.

    Fournier, R. O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 94, 1193–1211 (1999).

    CAS  Article  Google Scholar 

  165. 165.

    Christiansen, R. L. & Peterson, D. W. Chronology of the 1980 eruptive activity. In The 1980 Eruptions of Mount St. Helens, Washington Geological Survey Professional Paper 1250 (eds Lipman, P. W. & Mullineaux, D. R.) 17–30 (USGS, 1981).

  166. 166.

    McGuire, W. J. Volcano instability: a review of contemporary themes. Geol. Soc. Spec. Publ. 110, 1–23 (1996).

    ADS  Article  Google Scholar 

  167. 167.

    Manconi, A., Longpe, M. A., Walter, T. R., Troll, V. R. & Hansteen, T. H. The effects of flank collapses on volcano plumbing systems. Geology 37, 1099–1102 (2009).

    ADS  Article  Google Scholar 

  168. 168.

    Sandri, L., Acocella, V. & Newhall, C. Searching for patterns in caldera unrest. Geochem. Geophys. Geosyst. 18, 2748–2768 (2017).

    ADS  Article  Google Scholar 

  169. 169.

    Stix, J. Understanding fast and slow unrest at volcanoes and implications for eruption forecasting. Front. Earth Sci. 6, 56 (2018).

    ADS  Article  Google Scholar 

  170. 170.

    Johnson, H. P. et al. Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge. Nature 407, 174–177 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. 171.

    Dziak, R. P., Chadwick, W. W., Fox, C. G. & Embley, R. W. Hydrothermal temperature changes at the southern Juan de Fuca Ridge associated with a Mw 6.2 Blanco Transform earthquake. Geology 31, 119–122 (2003).

    ADS  Article  Google Scholar 

  172. 172.

    Špičák, A. & Vaněk, J. Earthquake swarms reveal submarine magma unrest induced by distant mega-earthquakes: Andaman Sea region. J. Asian Earth Sci. 116, 155–163 (2016).

    ADS  Article  Google Scholar 

  173. 173.

    Vona, A., Romano, C., Dingwell, D. B. & Giordano, D. The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochim. Cosmochim. Acta 75, 3214–3236 (2011).

    ADS  CAS  Article  Google Scholar 

  174. 174.

    Chevrel, M. O. et al. The viscosity of pāhoehoe lava: In situ syn-eruptive measurements from Kilauea, Hawaii. Earth Planet. Sci. Lett. 493, 161–171 (2018).

    ADS  CAS  Article  Google Scholar 

  175. 175.

    Shaw, H. R. Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature range 700° to 900°C. J. Geophys. Res. 68, 6337–6343 (1963).

    ADS  CAS  Article  Google Scholar 

  176. 176.

    Lejeune, A.-M. & Richet, P. Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J. Geophys. Res. Solid Earth 100, 4215–4229 (1995).

    CAS  Article  Google Scholar 

  177. 177.

    Caricchi, L. et al. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet. Sci. Lett. 264, 402–419 (2007).

    ADS  CAS  Article  Google Scholar 

  178. 178.

    Costa, A., Caricchi, L. & Bagdassarov, N. A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem. Geophys. Geosyst. 10 (2009).

  179. 179.

    Villemant, B. & Boudon, G. Transition from dome-forming to plinian eruptive styles controlled by H2O and Cl degassing. Nature 392, 65–69 (1998).

    ADS  CAS  Article  Google Scholar 

  180. 180.

    Edmonds, M., Oppenheimer, C., Pyle, D. M., Herd, R. A. & Thompson, G. SO2 emissions from Soufrière Hills Volcano and their relationship to conduit permeability, hydrothermal interaction and degassing regime. J. Volcanol. Geotherm. Res. 124, 23–43 (2003).

    ADS  CAS  Article  Google Scholar 

  181. 181.

    Castro, J. M., Bindeman, I. N., Tuffen, H. & Ian Schipper, C. Explosive origin of silicic lava: textural and δD –H2O evidence for pyroclastic degassing during rhyolite effusion. Earth Planet. Sci. Lett. 405, 52–61 (2014).

    ADS  CAS  Article  Google Scholar 

  182. 182.

    Saubin, E. et al. Conduit dynamics in transitional rhyolitic activity recorded by tuffisite vein textures from the 2008–2009 Chaitén Eruption. Front. Earth Sci. 4 (2016).

  183. 183.

    Lamur, A., Kendrick, J. E., Wadsworth, F. B. & Lavallée, Y. Fracture healing and strength recovery in magmatic liquids. Geology 47, 195–198 (2019).

    ADS  CAS  Article  Google Scholar 

  184. 184.

    Hildreth, W., Halliday, A. N. & Christiansen, R. L. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the yellowstone plateau volcanic field. J. Petrol. 32, 63–138 (1991).

    ADS  CAS  Article  Google Scholar 

  185. 185.

    Gomberg, J., Bodin, P. & Reasenberg, P. A. Observing earthquakes triggered in the near field by dynamic deformations. Bull. Seismol. Soc. Am. 93, 118–138 (2003).

    Article  Google Scholar 

  186. 186.

    Somerville, P. & Yoshimura, J. The influence of critical Moho Reflections on strong ground motions recorded in San Francisco and Oakland during the 1989 Loma Prieta Earthquake. Geophys. Res. Lett. 17, 1203–1206 (1990).

    ADS  Article  Google Scholar 

  187. 187.

    Davis, P. M., Rubinstein, J. L., Liu, K. H., Gao, S. S. & Knopoff, L. Northridge earthquake caused by geologic focusing of seismic waves. Science 289, 1746–1750 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  188. 188.

    Mori, J. & Helmberger, D. Large-amplitude moho reflections (SmS) from Landers aftershocks, Southern California. Bull. Seismol. Soc. Am. 86, 1845–1852 (1996).

    Google Scholar 

  189. 189.

    Hough, S. E. Remotely triggered earthquakes following moderate mainshocks (or, why California is not falling into the ocean). Seismol. Res. Lett. 76, 58–66 (2005).

    Article  Google Scholar 

  190. 190.

    Zhu, W., Ni, S., Zeng, X. & Somerville, P. The contribution of postcritical moho reflections SmS to ground motions of the 2008 M w 7.9 wenchuan earthquake. Bull. Seismol. Soc. Am. 109, 298–311 (2019).

    Article  Google Scholar 

  191. 191.

    Paolucci, R. Amplification of earthquake ground motion by steep topographic irregularities. Earthq. Eng. Struct. Dyn. 31, 1831–1853 (2002).

    Article  Google Scholar 

  192. 192.

    Langer, S., Finzi, Y. & Olsen-Kettle, L. M. Dynamic triggering of earthquakes is promoted by crustal heterogeneities and bimaterial faults. Phys. Earth Planet. Inter. 238, 34–41 (2015).

    ADS  Article  Google Scholar 

  193. 193.

    Wallace, L. M. et al. Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nat. Geosci. 10, 765–770 (2017).

    ADS  CAS  Article  Google Scholar 

  194. 194.

    Farías, C., Galván, B. & Miller, S. A. Numerical simulations (2D) on the influence of pre-existing local structures and seismic source characteristics in earthquake-volcano interactions. J. Volcanol. Geotherm. Res. 343, 192–210 (2017).

    ADS  Article  CAS  Google Scholar 

  195. 195.

    Biggs, J., Chivers, M. & Hutchinson, M. C. Surface deformation and stress interactions during the 2007–2010 sequence of earthquake, dyke intrusion and eruption in northern Tanzania. Geophys. J. Int. 195, 16–26 (2013).

  196. 196.

    Kumagai, H. & Chouet, B. A. Acoustic properties of a crack containing magmatic or hydrothermal fluids. J. Geophys. Res. Solid Earth 105, 25493–25512 (2000).

    CAS  Article  Google Scholar 

  197. 197.

    Nakano, M. & Kumagai, H. Response of a hydrothermal system to magmatic heat inferred from temporal variations in the complex frequencies of long-period events at Kusatsu-Shirane Volcano, Japan. J. Volcanol. Geotherm. Res. 147, 233–244 (2005).

    ADS  CAS  Article  Google Scholar 

  198. 198.

    Rudolph, M. L. & Manga, M. Frequency dependence of mud volcano response to earthquakes. Geophys. Res. Lett. 39, 1–5 (2012).

    Google Scholar 

  199. 199.

    Toda, S., Stein, R. S., Sevilgen, V. & Lin, J. Coulomb 3.3 graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching - user guide. US Geol. Surv. Open-File Rep. 1060, 63 (2011).

  200. 200.

    Gabrieli, A., Wilson, L. & Lane, S. Volcano–tectonic interactions as triggers of volcanic eruptions. Proc. Geol. Assoc. 126, 675–682 (2015).

    Article  Google Scholar 

  201. 201.

    Feuillet, N., Cocco, M., Musumeci, C. & Nostro, C. Stress interaction between seismic and volcanic activity at Mt. Etna. Geophys. J. Int. 164, 697–718 (2006).

    ADS  Article  Google Scholar 

  202. 202.

    Walter, T. R. et al. Volcanic activity influenced by tectonic earthquakes: static and dynamic stress triggering at Mt. Merapi. Geophys. Res. Lett. 34, L05304 (2007).

    ADS  Article  Google Scholar 

  203. 203.

    Kriswati, E., Meilano, I., Iguchi, M., Abidin, H. Z. & Surono An evaluation of the possibility of tectonic triggering of the Sinabung eruption. J. Volcanol. Geotherm. Res. 382, 224–232 (2019).

    ADS  CAS  Article  Google Scholar 

  204. 204.

    Kennedy, B. What effects do earthquakes have on volcanoes? Geology 45, 765–766 (2017).

    ADS  Article  Google Scholar 

  205. 205.

    Jolly, A., Lokmer, I., Christenson, B. & Thun, J. Relating gas ascent to eruption triggering for the April 27, 2016, White Island (Whakaari), New Zealand eruption sequence. Earth Planets Space 70, 177 (2018).

    ADS  Article  Google Scholar 

  206. 206.

    Aizawa, K. et al. Gas pathways and remotely triggered earthquakes beneath Mount Fuji, Japan. Geology 44, 127–130 (2016).

    ADS  CAS  Article  Google Scholar 

  207. 207.

    Ozawa, T. & Fujita, E. Local deformations around volcanoes associated with the 2011 off the Pacific coast of Tohoku earthquake. J. Geophys. Res. Solid Earth 118, 390–405 (2013).

    ADS  Article  Google Scholar 

  208. 208.

    Stein, R. S., Barka, A. A. & Dieterich, J. H. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys. J. Int. 128, 594–604 (1997).

    ADS  Article  Google Scholar 

  209. 209.

    Potter, S. H., Jolly, G. E., Neall, V. E., Johnston, D. M. & Scott, B. J. Communicating the status of volcanic activity: revising New Zealand’s volcanic alert level system. J. Appl. Volcanol. 3, 1–16 (2014).

    Article  Google Scholar 

  210. 210.

    Davis, M., Koenders, M. A. & Petford, N. Vibro-agitation of chambered magma. J. Volcanol. Geotherm. Res. 167, 24–36 (2007).

    ADS  CAS  Article  Google Scholar 

  211. 211.

    Sumita, I. & Manga, M. Suspension rheology under oscillatory shear and its geophysical implications. Earth Planet. Sci. Lett. 269, 467–476 (2008).

    ADS  CAS  Article  Google Scholar 

  212. 212.

    Okubo, P. G. & Wolfe, C. J. Swarms of similar long-period earthquakes in the mantle beneath Mauna Loa Volcano. J. Volcanol. Geotherm. Res. 178, 787–794 (2008).

    ADS  CAS  Article  Google Scholar 

  213. 213.

    Gottsmann, J., Lavallée, Y., Martí, J. & Aguirre-Díaz, G. Magma–tectonic interaction and the eruption of silicic batholiths. Earth Planet. Sci. Lett. 284, 426–434 (2009).

    ADS  CAS  Article  Google Scholar 

  214. 214.

    Christopher, T. E. et al. Crustal-scale degassing due to magma system destabilization and magma-gas decoupling at Soufrière Hills Volcano, Montserrat. Geochem. Geophys. Geosyst. 16, 2797–2811 (2015).

    ADS  CAS  Article  Google Scholar 

  215. 215.

    Miyazawa, M. Propagation of an earthquake triggering front from the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, 1–6 (2011).

    Article  Google Scholar 

  216. 216.

    Battaglia, J., Métaxian, J. P. & Garaebiti, E. Earthquake-volcano interaction imaged by coda wave interferometry. Geophys. Res. Lett. 39, 4–7 (2012).

    Article  Google Scholar 

  217. 217.

    Rouwet, D. et al. Recognizing and tracking volcanic hazards related to non-magmatic unrest: a review. J. Appl. Volcanol. 3, 1–17 (2014).

    Article  Google Scholar 

  218. 218.

    Phillipson, G., Sobradelo, R. & Gottsmann, J. Global volcanic unrest in the 21st century: an analysis of the first decade. J. Volcanol. Geotherm. Res. 264, 183–196 (2013).

    ADS  CAS  Article  Google Scholar 

  219. 219.

    Yukutake, Y. et al. Remotely triggered seismic activity in Hakone volcano during and after the passage of surface waves from the 2011 M9.0 Tohoku-Oki earthquake. Earth Planet. Sci. Lett. 373, 205–216 (2013).

    ADS  CAS  Article  Google Scholar 

  220. 220.

    Lupi, M., Fuchs, F. & Pacheco, J. F. Fault reactivation due to the M 7.6 Nicoya earthquake at the Turrialba-Irazú volcanic complex, Costa Rica: effects of dynamic stress triggering. Geophys. Res. Lett. 41, 4142–4148 (2014).

    ADS  Article  Google Scholar 

Original Text (This is the original text for your reference.)

  1. 1.

    Nunn, P. D. Lashed by sharks, pelted by demons, drowned for apostasy: the value of myths that explain geohazards in the Asia-Pacific region. Asian Geogr. 31, 59–82 (2014).

    Article  Google Scholar 

  2. 2.

    Troll, V. R. et al. Ancient oral tradition describes volcano–earthquake interaction at merapi volcano, indonesia. Geogr. Ann. Ser. A Phys. Geogr. 97, 137–166 (2015).

    Article  Google Scholar 

  3. 3.

    Taggart, D. All the mountains shake, seismic and volcanic imagery in the Old Norse Literature of Þórr. Scr. Islandica Isl.ändska Sällskapets Årsb. 68, 99–122 (2017).

    Google Scholar 

  4. 4.

    Hill, D. P., Pollitz, F. F. & Newhall, C. G. Earthquake–volcano interactions. Phys. Today 55, 41–47 (2002).

    Article  Google Scholar 

  5. 5.

    Linde, A. T. & Sacks, I. S. Triggering of volcanic eruptions. Nature 395, 888–890 (1998).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Manga, M. & Brodsky, E. Seismic triggering of eruptions in the far field: volcanoes and geysers. Annu. Rev. Earth Planet. Sci. 34, 263–291 (2006).

    ADS  CAS  Article  Google Scholar 

  7. 7.

    Bebbington, M. S. & Marzocchi, W. Stochastic models for earthquake triggering of volcanic eruptions. J. Geophys. Res. 116, B05204 (2011).

    ADS  Google Scholar 

  8. 8.

    Sawi, T. M. & Manga, M. Revisiting short-term earthquake triggered volcanism. Bull. Volcanol. 80, 57 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Koyama, M. Mechanical coupling between volcanic unrests and large earthquakes: a review of examples and mechanisms. J. Geogr. 111, 222–232 (2002).

    Article  Google Scholar 

  10. 10.

    Eggert, S. & Walter, T. R. Volcanic activity before and after large tectonic earthquakes: observations and statistical significance. Tectonophysics 471, 14–26 (2009).

    ADS  Article  Google Scholar 

  11. 11.

    Watt, S. F. L., Pyle, D. M. & Mather, T. A. The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone. Earth Planet. Sci. Lett. 277, 399–407 (2009).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Latter, J. H. The interdependence of seismic and volcanic phenomena: some space — Time relationships in seismicity and volcanism. Bull. Volcanol. 35, 127–142 (1971).

    ADS  Article  Google Scholar 

  13. 13.

    Yamashina, K. & Nakamura, K. Correlations between tectonic earthquakes and volcanic activity of Izu-Oshima Volcano, Japan. J. Volcanol. Geotherm. Res. 4, 233–250 (1978).

    ADS  Article  Google Scholar 

  14. 14.

    Ebmeier, S. K. et al. Shallow earthquake inhibits unrest near Chiles–Cerro Negro volcanoes, Ecuador–Colombian border. Earth Planet. Sci. Lett. 450, 283–291 (2016).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    Farías, C. & Basualto, D. Reactivating and calming volcanoes: the 2015 MW 8.3 Illapel megathrust strike. Geophys. Res. Lett. 47, 1–10 (2020).

    Article  Google Scholar 

  16. 16.

    Bonali, F. L., Tibaldi, A., Corazzato, C., Tormey, D. R. & Lara, L. E. Quantifying the effect of large earthquakes in promoting eruptions due to stress changes on magma pathway: the Chile case. Tectonophysics 583, 54–67 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    Avouris, D. M., Carn, S. A. & Waite, G. P. Triggering of volcanic degassing by large earthquakes. Geology 45, G39074.1 (2017).

    Article  Google Scholar 

  18. 18.

    MacGregor, A. G. Prediction in relation to seismo-volcanic phenomena in the caribbean volcanic arc. Bull. Volcanol. 8, 69–86 (1949).

    ADS  Article  Google Scholar 

  19. 19.

    Yokoyama, I. Volcanic eruptions triggered by tectonic earthquakes. Geophys. Bull. Hokkaido Univ. 25, 129–139 (1971).

    Google Scholar 

  20. 20.

    Tilling, R. I. et al. Earthquakes and related catastrophic events, Island of Hawaii, November 29, 1975; A preliminary report. Geol. Surv. https://doi.org/10.3133/cir740 (1976).

  21. 21.

    Barquero, R., Lesage, P., Metaxian, J. P., Creusot, A. & Fernández, M. La crisis sismica en el Volcán Irazú en 1991 (Costa Rica). Rev. Geol. Amer. Central 18, 5–18 (1995).

    Google Scholar 

  22. 22.

    Carbone, D., Jousset, P. & Musumeci, C. Gravity “steps” at Mt. Etna volcano (Italy): Instrumental effects or evidences of earthquake-triggered magma density changes? Geophys. Res. Lett. 36, (2009).

  23. 23.

    Cannata, A. et al. Response of Mount Etna to dynamic stresses from distant earthquakes. J. Geophys. Res. Solid Earth 115, 1–18 (2010).

    Google Scholar 

  24. 24.

    Yamazaki, K., Teraishi, M., Komatsu, S., Sonoda, Y. & Kano, Y. On the possibility of the 2011 Tohoku-oki earthquake reactivating Shinmoe-dake volcano, southwest Japan: Insights from strain data measured in vaults. Nat. Hazards Earth Syst. Sci. 11, 2655–2661 (2011).

    ADS  Article  Google Scholar 

  25. 25.

    Mora-Stock, C. et al. Comparison of seismic activity for Llaima and Villarrica volcanoes prior to and after the Maule 2010 earthquake. Int. J. Earth Sci. 103, 2015–2028 (2014).

    Article  Google Scholar 

  26. 26.

    Harris, A. J. L. & Ripepe, M. Regional earthquake as a trigger for enhanced volcanic activity: evidence from MODIS thermal data. Geophys. Res. Lett. 34, 1–6 (2007).

    Google Scholar 

  27. 27.

    Delle Donne, D., Harris, A. J. L., Ripepe, M. & Wright, R. Earthquake-induced thermal anomalies at active volcanoes. Geology 38, 771–774 (2010).

    ADS  Article  Google Scholar 

  28. 28.

    Hill-Butler, C., Blackett, M., Wright, R. & Trodd, N. The co-incidence of earthquakes and volcanoes: assessing global volcanic radiant flux responses to earthquakes in the 21st century. J. Volcanol. Geotherm. Res. 393, 106770 (2020).

    CAS  Article  Google Scholar 

  29. 29.

    La Femina, P. C., Connor, C. B., Hill, B. E., Strauch, W. & Saballos, J. A. Magma–tectonic interactions in Nicaragua: the 1999 seismic swarm and eruption of Cerro Negro volcano. J. Volcanol. Geotherm. Res. 137, 187–199 (2004).

    ADS  Article  CAS  Google Scholar 

  30. 30.

    Higgins, M. D. The Cascadia megathrust earthquake of 1700 may have rejuvenated an isolated basalt volcano in western Canada: age and petrographic evidence. J. Volcanol. Geotherm. Res. 179, 149–156 (2009).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Allan, A. S. R., Wilson, C. J. N., Millet, M. A. & Wysoczanski, R. J. The invisible hand: tectonic triggering and modulation of a rhyolitic supereruption. Geology 40, 563–566 (2012).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Barrientos, S. E. Large thrust earthquakes and volcanic eruptions. Pure Appl. Geophys. 142, 225–237 (1994).

    ADS  Article  Google Scholar 

  33. 33.

    Walter, T. R. & Amelung, F. Volcanic eruptions following M ≥ 9 megathrust earthquakes: implications for the Sumatra-Andaman volcanoes. Geology 35, 539–542 (2007).

    ADS  Article  Google Scholar 

  34. 34.

    Walter, T. R. et al. Simultaneous magma and gas eruptions at three volcanoes in southern Italy: an earthquake trigger? Geology 37, 251–254 (2009).

    ADS  Article  Google Scholar 

  35. 35.

    Hamling, I. J. & Kilgour, G. Goldilocks conditions required for earthquakes to trigger basaltic eruptions: Evidence from the 2015 Ambrym eruption. Sci. Adv. 6, eaaz5261 (2020).

  36. 36.

    Carniel, R., Di Cecca, M. & Rouland, D. Ambrym, Vanuatu (July–August 2000): spectral and dynamical transitions on the hours-to-days timescale. J. Volcanol. Geotherm. Res. 128, 1–13 (2003).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Ortiz, R. et al. Villarrica volcano (Chile): characteristics of the volcanic tremor and forecasting of small explosions by means of a material failure method. J. Volcanol. Geotherm. Res. 128, 247–259 (2003).

    ADS  CAS  Article  Google Scholar 

  38. 38.

    Tárraga, M. et al. Dynamical parameter analysis of continuous seismic signals of Popocatépetl volcano (Central Mexico): a case of tectonic earthquakes influencing volcanic activity. Acta Geophys. 60, 664–681 (2012).

    ADS  Article  Google Scholar 

  39. 39.

    Jousset, P. et al. Signs of magma ascent in LP and VLP seismic events and link to degassing: an example from the 2010 explosive eruption at Merapi volcano, Indonesia. J. Volcanol. Geotherm. Res. 261, 171–192 (2013).

    ADS  CAS  Article  Google Scholar 

  40. 40.

    Carr, B. B., Clarke, A. B. & de’ Michieli Vitturi, M. Earthquake induced variations in extrusion rate: a numerical modeling approach to the 2006 eruption of Merapi Volcano (Indonesia). Earth Planet. Sci. Lett. 482, 377–387 (2018).

    ADS  CAS  Article  Google Scholar 

  41. 41.

    Prejean, S. G. et al. Remotely triggered seismicity on the United States West Coast following the Mw 7.9 Denali fault earthquake. Bull. Seismol. Soc. Am. 94, S348–S359 (2004).

    Article  Google Scholar 

  42. 42.

    Moran, S. C., Power, J. A., Stihler, S. D., Sánchez, J. J. & Caplan-Auerbach, J. Earthquake triggering at Alaskan volcanoes following the 3 November 2002 Denali fault earthquake. Bull. Seismol. Soc. Am. 94, S300–S309 (2004).

    Article  Google Scholar 

  43. 43.

    Yukutake, Y. et al. Remotely-triggered seismicity in the Hakone volcano following the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63, 737–740 (2011).

    ADS  Article  Google Scholar 

  44. 44.

    Farías, C., Lupi, M., Fuchs, F. & Miller, S. A. Seismic activity of the Nevados de Chillán volcanic complex after the 2010 Mw8.8 Maule, Chile, earthquake. J. Volcanol. Geotherm. Res. 283, 116–126 (2014).

    ADS  Article  CAS  Google Scholar 

  45. 45.

    Lin, C. H. Dynamic triggering of volcano drumbeat-like seismicity at the Tatun volcano group in Taiwan. Geophys. J. Int. 210, 354–359 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Cigolini, C., Laiolo, M. & Coppola, D. Earthquake – volcano interactions detected from radon degassing at Stromboli (Italy). Earth Planet. Sci. Lett. 257, 511–525 (2007).

    ADS  CAS  Article  Google Scholar 

  47. 47.

    Gresse, M., Vandemeulebrouck, J., Byrdina, S., Chiodini, G. & Bruno, P. P. Changes in CO2 diffuse degassing induced by the passing of seismic waves. J. Volcanol. Geotherm. Res. 320, 12–18 (2016).

    ADS  CAS  Article  Google Scholar 

  48. 48.

    Madonia, P., Cusano, P., Diliberto, I. S. & Cangemi, M. Thermal anomalies in fumaroles at Vulcano island (Italy) and their relationship with seismic activity. Phys. Chem. Earth A/B/C 63, 160–169 (2013).

    ADS  Article  Google Scholar 

  49. 49.

    Takada, Y. & Fukushima, Y. Volcanic subsidence triggered by the 2011 Tohoku earthquake in Japan. Nat. Geosci. 6, 637–641 (2013).

    ADS  CAS  Article  Google Scholar 

  50. 50.

    Pritchard, M. E., Jay, J. A., Aron, F., Henderson, S. T. & Lara, L. E. Subsidence at southern Andes volcanoes induced by the 2010 Maule, Chile earthquake. Nat. Geosci. 6, 632–636 (2013).

    ADS  CAS  Article  Google Scholar 

  51. 51.

    Marler, G. D. & White, D. E. Seismic geyser and its bearing on the origin and evolution of geysers and hot springs of Yellowstone National Park. Geol. Soc. Am. Bull. 86, 749 (1975).

    ADS  Article  Google Scholar 

  52. 52.

    Hill, D. P. et al. Seismicity remotely triggered by the magnitude 7.3 Landers, California, Earthquake. Science 260, 1617–1623 (1993).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Husen, S., Taylor, R., Smith, R. B. & Healser, H. Changes in geyser eruption behavior and remotely triggered seismicity in Yellowstone National Park produced by the 2002 M 7.9 Denali fault earthquake, Alaska. Geology 32, 537 (2004).

    ADS  Article  Google Scholar 

  54. 54.

    Rouwet, D., Mora-Amador, R., Ramírez-Umaña, C. J., González, G. & Inguaggiato, S. Dynamic fluid recycling at Laguna Caliente (Poás, Costa Rica) before and during the 2006 - ongoing phreatic eruption cycle (2005-10). In Geochemistry and Geophysics of Active Volcanic Lakes (eds Ohba, T., Capaccioni, B. & Caudron, C.) (The Geological Society of London, 2016).

  55. 55.

    Hurwitz, S. & Manga, M. The fascinating and complex dynamics of geyser eruptions. Annu. Rev. Earth Planet. Sci. 45, 31–59 (2017).

    ADS  CAS  Article  Google Scholar 

  56. 56.

    Nishimura, T. Triggering of volcanic eruptions by large earthquakes. Geophys. Res. Lett. 44, 7750–7756 (2017).

    ADS  Article  Google Scholar 

  57. 57.

    Marzocchi, W. Remote seismic influence on large explosive eruptions. J. Geophys. Res. 107, EPM 6-1–EPM 6-7 (2002).

  58. 58.

    Alam, M. & Kimura, M. Statistical analysis of time-distance relationship between volcanic eruptions and great earthquakes in Japan. Earth Planets Space 56, 179–192 (2004).

    ADS  Article  Google Scholar 

  59. 59.

    Manga, M. et al. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Rev. Geophys. 50, (2012).

  60. 60.

    Mazzini, A. & Etiope, G. Mud volcanism: an updated review. Earth-Sci. Rev. 168, 81–112 (2017).

    ADS  CAS  Article  Google Scholar 

  61. 61.

    Marzocchi, W., Casarotti, E. & Piersanti, A. Modeling the stress variations induced by great earthquakes on the largest volcanic eruptions of the 20th century. J. Geophys. Res. Solid Earth 107, ESE 13-1–ESE 13-8 (2002).

  62. 62.

    West, M., Sánchez, J. J. & McNutt, S. R. Periodically triggered seismicity at Mount Wrangell, Alaska, after the Sumatra Earthquake. Science 308, 1144–1146 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Wang, C.‐Y. & Manga, M. Hydrologic responses to earthquakes and a general metric. Geofluids 10, 206–216 (2010).

    Article  Google Scholar 

  64. 64.

    Sulpizio, R. & Massaro, S. Influence of stress field changes on eruption initiation and dynamics: a review. Front. Earth Sci. 5, 1–11 (2017).

    Google Scholar 

  65. 65.

    Steacy, S., Gomberg, J. & Cocco, M. Introduction to special section: stress transfer, earthquake triggering, and time-dependent seismic hazard. J. Geophys. Res. Solid Earth 110, 1–12 (2005).

    Google Scholar 

  66. 66.

    Nakamura, K. Volcano structure and possible mechanical correlation between volcanic eruptions and earthquakes. Bull. Volcanol. Soc. Jpn. Second Ser. 20, 229–240 (1975).

    Google Scholar 

  67. 67.

    Nostro, C., Stein, R. S., Cocco, M., Belardinelli, M. E. & Marzocchi, W. Two-way coupling between Vesuvius eruptions and southern Apennine earthquakes, Italy, by elastic stress transfer. J. Geophys. Res. Solid Earth 103, 24487–24504 (1998).

    Article  Google Scholar 

  68. 68.

    Díez, M., La Femina, P. C., Connor, C. B., Strauch, W. & Tenorio, V. Evidence for static stress changes triggering the 1999 eruption of Cerro Negro Volcano, Nicaragua and regional aftershock sequences. Geophys. Res. Lett. 32, 1–4 (2005).

    Article  Google Scholar 

  69. 69.

    Walter, T. R. & Amelung, F. Volcano-earthquake interaction at Mauna Loa volcano, Hawaii. J. Geophys. Res. 111, B05204 (2006).

    ADS  Google Scholar 

  70. 70.

    Walter, T. R. How a tectonic earthquake may wake up volcanoes: Stress transfer during the 1996 earthquake–eruption sequence at the Karymsky Volcanic Group, Kamchatka. Earth Planet. Sci. Lett. 264, 347–359 (2007).

    ADS  CAS  Article  Google Scholar 

  71. 71.

    Wang, F., Kang, S. Z., Zhao, W. Y. & Min, W. Influence of the March 11, 2011 Mw 9.0 Tohoku-oki earthquake on regional volcanic activities. Chin. Sci. Bull. 56, 2077–2081 (2011).

    CAS  Article  Google Scholar 

  72. 72.

    Chesley, C., La Femina, P. C., Puskas, C. & Kobayashi, D. The 1707 M w 8.7 Hoei earthquake triggered the largest historical eruption of Mt. Fuji. Geophys. Res. Lett. 39, 2012GL053868 (2012).

    Article  Google Scholar 

  73. 73.

    Bonali, F. L. Earthquake-induced static stress change on magma pathway in promoting the 2012 Copahue eruption. Tectonophysics 608, 127–137 (2013).

    ADS  Article  Google Scholar 

  74. 74.

    Ozawa, T., Fujita, E. & Ueda, H. Crustal deformation associated with the 2016 Kumamoto Earthquake and its effect on the magma system of Aso volcano. Earth, Planets Space 68 (2016).

  75. 75.

    Gregg, P. M. et al. Stress triggering of the 2005 eruption of Sierra Negra Volcano, Galápagos. Geophys. Res. Lett. 45, 288–13,297 (2018).

    Article  Google Scholar 

  76. 76.

    Shimomura, Y., Nishimura, T. & Sato, H. Bubble growth processes in magma surrounded by an elastic medium. J. Volcanol. Geotherm. Res. 155, 307–322 (2006).

    ADS  CAS  Article  Google Scholar 

  77. 77.

    Ichihara, M. & Nishimura, T. Pressure impulses generated by bubbles interacting with ambient perturbation. In Extreme Environmental Events: Complexity in Forecasting and Early Warning (ed. Meyers, R. A.) 731–752 (Springer, 2009).

  78. 78.

    Lupi, M. & Miller, S. A. Short-lived tectonic switch mechanism for long-term pulses of volcanic activity after mega-thrust earthquakes. Solid Earth 5, 13–24 (2014).

    ADS  Article  Google Scholar 

  79. 79.

    Pérez-Flores, P. et al. The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile. J. Struct. Geol. 104, 142–158 (2017).

    ADS  Article  Google Scholar 

  80. 80.

    Kimura, M. Significant eruptive activities related to large interplate earthquakes in the northwestern Pacific margin. J. Phys. Earth 26, S557–S570 (1978).

    Article  Google Scholar 

  81. 81.

    McNutt, S. R. & Beavan, R. J. Eruptions of Pavlof Volcano and their possible modulation by ocean load and tectonic stresses. J. Geophys. Res. Solid Earth 92, 11509–11523 (1987).

    Article  Google Scholar 

  82. 82.

    Kimura, M. Relationship between volcanic eruption and large earthquakes in the vicinity of Japan. Annu. Rev. Fluid Mech. 37, 293–317 (1994).

    Google Scholar 

  83. 83.

    Bautista, B. C. et al. Relationship of regional and local structures to Mount Pinatubo activity. In Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines (eds Newhall, C. G. & Punongbayan, R. S.) 351–370 (Philippine Institute of Volcanology and Seismology, 1996).

  84. 84.

    Rikitake, T. & Sato, R. Up-squeezing of magma under tectonic stress. J. Phys. Earth 37, 303–311 (1989).

    Article  Google Scholar 

  85. 85.

    Jónsson, S. Stress interaction between magma accumulation and trapdoor faulting on Sierra Negra volcano, Galápagos. Tectonophysics 471, 36–44 (2009).

    ADS  Article  Google Scholar 

  86. 86.

    Maccaferri, F., Rivalta, E., Passarelli, L. & Aoki, Y. On the mechanisms governing dike arrest: Insight from the 2000 Miyakejima dike injection. Earth Planet. Sci. Lett. 434, 64–74 (2016).

    ADS  CAS  Article  Google Scholar 

  87. 87.

    Xu, W., Jónsson, S., Corbi, F. & Rivalta, E. Graben formation and dike arrest during the 2009 Harrat Lunayyir dike intrusion in Saudi Arabia: insights from InSAR, stress calculations and analog experiments. J. Geophys. Res. Solid Earth 121, 2837–2851 (2016).

    ADS  Article  Google Scholar 

  88. 88.

    Nur, A. & Mavko, G. Postseismic viscoelastic rebound. Science 183, 204–206 (1974).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Pollitz, F. F. Postseismic relaxation theory on the spherical Earth. Bull. Seismol. Soc. Am. 82, 422–453 (1992).

    Google Scholar 

  90. 90.

    Hill, D. P. & Prejean, S. G. Dynamic triggering. In Treatise on Geophysics (ed. Schubert, G.) 274–304 (Elsevier B.V., 2015).

  91. 91.

    Lay, T. & Wallace, T. C. Modern Global Seismology (Academic Press, 1995).

  92. 92.

    Gomberg, J., Reasenberg, P. A., Bodin, P. & Harris, R. A. Earthquake triggering by seismic waves following the landers and hector mine earthquakes. Nature 411, 462–466 (2001).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Young, F. R. Cavitation (Imperial College Press, 1989).

  94. 94.

    Crews, J. B. & Cooper, C. A. Experimental evidence for seismically initiated gas bubble nucleation and growth in groundwater as a mechanism for coseismic borehole water level rise and remotely triggered seismicity. J. Geophys. Res. Solid Earth 119, 7079–7091 (2014).

  95. 95.

    Shea, T. Bubble nucleation in magmas: a dominantly heterogeneous process? J. Volcanol. Geotherm. Res. 343, 155–170 (2017).

    ADS  CAS  Article  Google Scholar 

  96. 96.

    Mangan, M. & Sisson, T. Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet. Sci. Lett. 183, 441–455 (2000).

    ADS  CAS  Article  Google Scholar 

  97. 97.

    Hurwitz, S. & Navon, O. Bubble nucleation in rhyolitic melts: Experiments at high pressure, temperature, and water content. Earth Planet. Sci. Lett. 122, 267–280 (1994).

    ADS  CAS  Article  Google Scholar 

  98. 98.

    Carey, R. J. et al. Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema’uma’u Overlook vent, Kīlauea, Hawai’i, USA. J. Geophys. Res. Solid Earth 117 (2012).

  99. 99.

    Eller, A. I. & Flynn, H. G. Rectified diffusion during nonlinear pulsations of cavitation bubbles. J. Acoust. Soc. Am. 37, 493–503 (1965).

    ADS  MathSciNet  Article  Google Scholar 

  100. 100.

    Sturtevant, B., Kanamori, H. & Brodsky, E. E. Seismic triggering by rectified diffusion in geothermal systems. J. Geophys. Res. Solid Earth 101, 25269–25282 (1996).

    Article  Google Scholar 

  101. 101.

    Brodsky, E. E., Sturtevant, B. & Kanamori, H. Earthquakes, volcanoes, and rectified diffusion. J. Geophys. Res. Solid Earth 103, 23827–23838 (1998).

    Article  Google Scholar 

  102. 102.

    Ichihara, M. & Brodsky, E. E. A limit on the effect of rectified diffusion in volcanic systems. Geophys. Res. Lett. 33, L02316 (2006).

    ADS  Article  Google Scholar 

  103. 103.

    Lautze, N. C., Sisson, T. W., Mangan, M. T. & Grove, T. L. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas. Contrib. Mineral. Petrol. 161, 331–347 (2011).

    ADS  CAS  Article  Google Scholar 

  104. 104.

    Masotta, M. & Keppler, H. A new hydrothermal moissanite cell apparatus for optical in-situ observations at high pressure and high temperature, with applications to bubble nucleation in silicate melts. Am. Mineral. 102, 2022–2031 (2017).

    ADS  Article  Google Scholar 

  105. 105.

    Igualada-Villodre, E., Medina-Palomo, A., Vega-Martínez, P. & Rodríguez-Rodríguez, J. Transient effects in the translation of bubbles insonated with acoustic pulses of finite duration. J. Fluid Mech. 836, 649–693 (2018).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  106. 106.

    Sahagian, D. L. & Proussevitch, A. A. Bubbles in volcanic systems. Nature 359, 485 (1992).

    ADS  Article  Google Scholar 

  107. 107.

    Linde, A. T., Sacks, I. S., Johnston, M. J. S., Hill, D. P. & Bilham, R. G. Increased pressure from rising bubbles as a mechanism for remotely triggered seismicity. Nature 371, 408–410 (1994).

    ADS  Article  Google Scholar 

  108. 108.

    Czekaluk, E. B. Osnovy piezometrii zalegei nefti i gaza (in Russian). Gostechizdat (1961).

  109. 109.

    Steinberg, G. S., Steinberg, A. S. & Merzhanov, A. G. Fluid mechanism of pressure growth in volcanic (magmatic) systems. Mod. Geol. 13, 257–265 (1989).

    Google Scholar 

  110. 110.

    Bagdassarov, N. Pressure and volume changes in magmatic systems due to the vertical displacement of compressible materials. J. Volcanol. Geotherm. Res. 63, 95–100 (1994).

    ADS  Article  Google Scholar 

  111. 111.

    Pyle, D. M. & Pyle, D. L. Bubble migration and the initiation of volcanic eruptions. J. Volcanol. Geotherm. Res. 67, 227–232 (1995).

    ADS  CAS  Article  Google Scholar 

  112. 112.

    Woith, H. et al. Heterogeneous response of hydrogeological systems to the Izmit and Düzce (Turkey) earthquakes of 1999. Hydrogeol. J. 11, 113–121 (2003).

    ADS  CAS  Article  Google Scholar 

  113. 113.

    Iwata, S., Yamada, Y., Takashima, T. & Mori, H. Pressure-oscillation defoaming for viscoelastic fluid. J. Nonnewton. Fluid Mech. 151, 30–37 (2008).

    CAS  MATH  Article  Google Scholar 

  114. 114.

    De Corato, M., Dimakopoulos, Y. & Tsamopoulos, J. The rising velocity of a slowly pulsating bubble in a shear-thinning fluid. Phys. Fluids 31, 083103 (2019).

  115. 115.

    Namiki, A., Rivalta, E., Woith, H. & Walter, T. R. Sloshing of a bubbly magma reservoir as a mechanism of triggered eruptions. J. Volcanol. Geotherm. Res. 320, 156–171 (2016).

    ADS  CAS  Article  Google Scholar 

  116. 116.

    Miles, J. W. On the sloshing of liquid in a cylindrical tank. Report from The Ramo-Wooldridge Corporation, Cruided Missile Research Division, Aeromechanics Section (1956).

  117. 117.

    Housner, G. W. Dynamic pressures on accelerated fluid containers. Bull. Seismol. Soc. Am. 47, 15–35 (1957).

  118. 118.

    Abramson, H. N. The Dynamic Behavior of Liquids in Moving Containers Vol. SP-106 (National Aeronautics and Space Administration, 1966).

  119. 119.

    Namiki, A. et al. Volcanic activities triggered or inhibited by resonance of volcanic edifices to large earthquakes. Geology 47, 67–70 (2018).

    ADS  Article  Google Scholar 

  120. 120.

    Browne, P. R. & Lawless, J. Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere. Earth-Sci. Rev. 52, 299–331 (2001).

    ADS  Article  Google Scholar 

  121. 121.

    Peng, Z., Hill, D. P., Shelly, D. R. & Aiken, C. Remotely triggered microearthquakes and tremor in central California following the 2010 Mw 8.8 Chile earthquake. Geophys. Res. Lett. 37 (2010).

  122. 122.

    Jay, J. A. et al. Shallow seismicity, triggered seismicity, and ambient noise tomography at the long-dormant Uturuncu Volcano, Bolivia. Bull. Volcanol. 74, 817–837 (2012).

    ADS  Article  Google Scholar 

  123. 123.

    Surve, G. & Mohan, G. Possible evidence of remotely triggered and delayed seismicity due to the 2001 Bhuj earthquake (Mw = 7.6) in western India. Nat. Hazards 64, 299–310 (2012).

    Article  Google Scholar 

  124. 124.

    Drake, B. D. et al. Evolution of a dynamic paleo-hydrothermal system at Mangatete, Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 282, 19–35 (2014).

    ADS  CAS  Article  Google Scholar 

  125. 125.

    Kosuga, M. Seismic activity near the Moriyoshi-zan volcano in Akita Prefecture, northeastern Japan: Implications for geofluid migration and a midcrustal geofluid reservoir Geofluid processes in subduction zones and mantle dynamics. Earth Planets Space 66, 1–16 (2014).

    ADS  Article  Google Scholar 

  126. 126.

    Hurwitz, S., Sohn, R. A., Luttrell, K. & Manga, M. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather. J. Geophys. Res. Solid Earth 119, 1718–1737 (2014).

    ADS  Article  Google Scholar 

  127. 127.

    Lin, C. H. Probable dynamic triggering of phreatic eruption in the Tatun volcano group of Taiwan. J. Asian Earth Sci. 149, 78–85 (2017).

    ADS  Article  Google Scholar 

  128. 128.

    Girault, F. et al. Persistent CO2 emissions and hydrothermal unrest following the 2015 earthquake in Nepal. Nat. Commun. 9, 2956 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. 129.

    Peng, Z. et al. Remote triggering of microearthquakes and tremor in New Zealand following the 2016 Mw 7.8 Kaikōura earthquake. Bull. Seismol. Soc. Am. 108, 1784–1793 (2018).

    Article  Google Scholar 

  130. 130.

    Loame, R. C. et al. Using paleoseismology and tephrochronology to reconstruct fault rupturing and hydrothermal activity since c. 40 ka in Taupo Rift, New Zealand. Quat. Int. 500, 52–70 (2019).

    Article  Google Scholar 

  131. 131.

    Saade, M. et al. Evidence of reactivation of a hydrothermal system from seismic anisotropy changes. Nat. Commun. 10, 1–8 (2019).

    ADS  CAS  Article  Google Scholar 

  132. 132.

    Farías, C. & Galván, B. Numerical wave propagation study of the unusual response of Nevados de Chillán volcano to two aftershocks of the 2010 MW = 8.8 Maule earthquake. J. Volcanol. Geotherm. Res. 389, 106735 (2020).

    Article  CAS  Google Scholar 

  133. 133.

    Revil, A. et al. Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self-potential, soil temperature and soil CO2 concentration measurements. Geophys. J. Int. 186, 1078–1094 (2011).

    ADS  CAS  Article  Google Scholar 

  134. 134.

    Vargas, C. A. et al. Breathing of the Nevado del Ruiz volcano reservoir, Colombia, inferred from repeated seismic tomography. Sci. Rep. 7, 8–13 (2017).

    Article  Google Scholar 

  135. 135.

    Healy, J., Lloyd, E. F., Banwell, C. J. & Adams, R. D. Volcanic eruption on Raoul Island, November 1964. Nature 205, 743–745 (1965).

    ADS  Article  Google Scholar 

  136. 136.

    Christenson, B. W. et al. Hazards from hydrothermally sealed volcanic conduits. EOS Trans. Am. Geophys. Union 88, 53–55 (2007).

    ADS  Article  Google Scholar 

  137. 137.

    Lupi, M. et al. Regional earthquakes followed by delayed ground uplifts at Campi Flegrei Caldera, Italy: Arguments for a causal link. Earth Planet. Sci. Lett. 474, 436–446 (2017).

    ADS  CAS  Article  Google Scholar 

  138. 138.

    Jolly, A. D. On the shallow volcanic response to remote seismicity. Geology 47, 95–96 (2019).

    ADS  Article  Google Scholar 

  139. 139.

    Elkhoury, J. E., Brodsky, E. E. & Agnew, D. C. Seismic waves increase permeability. Nature 441, 1135–1138 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    Wang, C. -Y. & Manga, M. Earthquakes and Water Vol. 114 (Springer, 2009).

  141. 141.

    Rojstaczer, S., Wolf, S. & Michel, R. Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature 373, 237–239 (1995).

    ADS  CAS  Article  Google Scholar 

  142. 142.

    Manga, M., Brodsky, E. E. & Boone, M. Response of streamflow to multiple earthquakes. Geophys. Res. Lett. 30 (2003).

  143. 143.

    Rojstaczer, S. & Wolf, S. Permeability changes associated with large earthquakes: an example from Loma Prieta, California. Geology 20, 211–214 (1992).

    ADS  Article  Google Scholar 

  144. 144.

    Roeloffs, E. A. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J. Geophys. Res. Solid Earth 103, 869–889 (1998).

    Article  Google Scholar 

  145. 145.

    Kocharyan, G. G. et al. Hydrologic response of underground reservoirs to seismic vibrations. Izv. Phys. Solid Earth 47, 1071–1082 (2011).

    ADS  Article  Google Scholar 

  146. 146.

    Yan, R., Woith, H. & Wang, R. Groundwater level changes induced by the 2011 Tohoku earthquake in China mainland. Geophys. J. Int. 199, 533–548 (2014).

    ADS  Article  Google Scholar 

  147. 147.

    Weaver, K. C. et al. Seismological and hydrogeological controls on New Zealand-wide groundwater level changes induced by the 2016 M w 7.8 Kaikōura earthquake. Geofluids 2019, 1–18 (2019).

    Article  Google Scholar 

  148. 148.

    Mogi, K., Mochizuki, H. & Kurokawa, Y. Temperature changes in an artesian spring at Usami in the Izu Peninsula (Japan) and their relation to earthquakes. Tectonophysics 159, 95–108 (1989).

    ADS  Article  Google Scholar 

  149. 149.

    Demezhko, D. Y., Yurkov, A. K., Outkin, V. I. & Shchapov, V. A. Temperature changes in the KUN-1 borehole, Kunashir Island, induced by the Tohoku Earthquake (March 11, 2011, M = 9.0). Dokl. Earth Sci. 445, 883–887 (2012).

    ADS  CAS  Article  Google Scholar 

  150. 150.

    He, A. & Singh, R. P. Coseismic groundwater temperature response associated with the Wenchuan earthquake. Pure Appl. Geophys. 177, 109–120 (2020).

    ADS  Article  Google Scholar 

  151. 151.

    Mellors, R., Kilb, D., Aliyev, A., Gasanov, A. & Yetirmishli, G. Correlations between earthquakes and large mud volcano eruptions. J. Geophys. Res. Solid Earth 112 (2007).

  152. 152.

    Manga, M., Brumm, M. & Rudolph, M. L. Earthquake triggering of mud volcanoes. Mar. Pet. Geol. 26, 1785–1798 (2009).

    Article  Google Scholar 

  153. 153.

    Bonini, M., Rudolph, M. L. & Manga, M. Long- and short-term triggering and modulation of mud volcano eruptions by earthquakes. Tectonophysics 672–673, 190–211 (2016).

    ADS  Article  Google Scholar 

  154. 154.

    Christenson, B. W. et al. Cyclic processes and factors leading to phreatic eruption events: insights from the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand. J. Volcanol. Geotherm. Res. 191, 15–32 (2010).

    ADS  CAS  Article  Google Scholar 

  155. 155.

    Heap, M. J. et al. A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand). J. Volcanol. Geotherm. Res. 332, 88–108 (2017).

    ADS  CAS  Article  Google Scholar 

  156. 156.

    Brodsky, E. E., Roeloffs, E., Woodcock, D., Gall, I. & Manga, M. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res. 108, 2390 (2003).

    ADS  Article  Google Scholar 

  157. 157.

    Candela, T., Brodsky, E. E., Marone, C. & Elsworth, D. Laboratory evidence for particle mobilization as a mechanism for permeability enhancement via dynamic stressing. Earth Planet. Sci. Lett. 392, 279–291 (2014).

    ADS  CAS  Article  Google Scholar 

  158. 158.

    Candela, T., Brodsky, E. E., Marone, C. & Elsworth, D. Flow rate dictates permeability enhancement during fluid pressure oscillations in laboratory experiments. J. Geophys. Res. Solid Earth 120, 2037–2055 (2015).

    ADS  Article  Google Scholar 

  159. 159.

    Barbosa, N. D., Hunziker, J., Lissa, S., Saenger, E. H. & Lupi, M. Fracture unclogging: a numerical study of seismically induced viscous shear stresses in fluid-saturated fractured rocks. J. Geophys. Res. Solid Earth 124, 11705–11727 (2019).

    ADS  Article  Google Scholar 

  160. 160.

    Shi, Y., Liao, X., Zhang, D. & Liu, C. Seismic waves could decrease the permeability of the shallow crust. Geophys. Res. Lett. 46, 6371–6377 (2019).

    ADS  Article  Google Scholar 

  161. 161.

    Faoro, I., Elsworth, D. & Marone, C. Permeability evolution during dynamic stressing of dual permeability media. J. Geophys. Res. Solid Earth 117 (2012).

  162. 162.

    Wang, C.-Y., Liao, X., Wang, L.-P., Wang, C.-H. & Manga, M. Large earthquakes create vertical permeability by breaching aquitards. Water Resour. Res. 52, 5923–5937 (2016).

    ADS  Article  Google Scholar 

  163. 163.

    Shokouhi, P. et al. Dynamic stressing of naturally fractured rocks: on the relation between transient changes in permeability and elastic wave velocity. Geophys. Res. Lett. 47, 1–10 (2020).

    Article  Google Scholar 

  164. 164.

    Fournier, R. O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 94, 1193–1211 (1999).

    CAS  Article  Google Scholar 

  165. 165.

    Christiansen, R. L. & Peterson, D. W. Chronology of the 1980 eruptive activity. In The 1980 Eruptions of Mount St. Helens, Washington Geological Survey Professional Paper 1250 (eds Lipman, P. W. & Mullineaux, D. R.) 17–30 (USGS, 1981).

  166. 166.

    McGuire, W. J. Volcano instability: a review of contemporary themes. Geol. Soc. Spec. Publ. 110, 1–23 (1996).

    ADS  Article  Google Scholar 

  167. 167.

    Manconi, A., Longpe, M. A., Walter, T. R., Troll, V. R. & Hansteen, T. H. The effects of flank collapses on volcano plumbing systems. Geology 37, 1099–1102 (2009).

    ADS  Article  Google Scholar 

  168. 168.

    Sandri, L., Acocella, V. & Newhall, C. Searching for patterns in caldera unrest. Geochem. Geophys. Geosyst. 18, 2748–2768 (2017).

    ADS  Article  Google Scholar 

  169. 169.

    Stix, J. Understanding fast and slow unrest at volcanoes and implications for eruption forecasting. Front. Earth Sci. 6, 56 (2018).

    ADS  Article  Google Scholar 

  170. 170.

    Johnson, H. P. et al. Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge. Nature 407, 174–177 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. 171.

    Dziak, R. P., Chadwick, W. W., Fox, C. G. & Embley, R. W. Hydrothermal temperature changes at the southern Juan de Fuca Ridge associated with a Mw 6.2 Blanco Transform earthquake. Geology 31, 119–122 (2003).

    ADS  Article  Google Scholar 

  172. 172.

    Špičák, A. & Vaněk, J. Earthquake swarms reveal submarine magma unrest induced by distant mega-earthquakes: Andaman Sea region. J. Asian Earth Sci. 116, 155–163 (2016).

    ADS  Article  Google Scholar 

  173. 173.

    Vona, A., Romano, C., Dingwell, D. B. & Giordano, D. The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochim. Cosmochim. Acta 75, 3214–3236 (2011).

    ADS  CAS  Article  Google Scholar 

  174. 174.

    Chevrel, M. O. et al. The viscosity of pāhoehoe lava: In situ syn-eruptive measurements from Kilauea, Hawaii. Earth Planet. Sci. Lett. 493, 161–171 (2018).

    ADS  CAS  Article  Google Scholar 

  175. 175.

    Shaw, H. R. Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature range 700° to 900°C. J. Geophys. Res. 68, 6337–6343 (1963).

    ADS  CAS  Article  Google Scholar 

  176. 176.

    Lejeune, A.-M. & Richet, P. Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J. Geophys. Res. Solid Earth 100, 4215–4229 (1995).

    CAS  Article  Google Scholar 

  177. 177.

    Caricchi, L. et al. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet. Sci. Lett. 264, 402–419 (2007).

    ADS  CAS  Article  Google Scholar 

  178. 178.

    Costa, A., Caricchi, L. & Bagdassarov, N. A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem. Geophys. Geosyst. 10 (2009).

  179. 179.

    Villemant, B. & Boudon, G. Transition from dome-forming to plinian eruptive styles controlled by H2O and Cl degassing. Nature 392, 65–69 (1998).

    ADS  CAS  Article  Google Scholar 

  180. 180.

    Edmonds, M., Oppenheimer, C., Pyle, D. M., Herd, R. A. & Thompson, G. SO2 emissions from Soufrière Hills Volcano and their relationship to conduit permeability, hydrothermal interaction and degassing regime. J. Volcanol. Geotherm. Res. 124, 23–43 (2003).

    ADS  CAS  Article  Google Scholar 

  181. 181.

    Castro, J. M., Bindeman, I. N., Tuffen, H. & Ian Schipper, C. Explosive origin of silicic lava: textural and δD –H2O evidence for pyroclastic degassing during rhyolite effusion. Earth Planet. Sci. Lett. 405, 52–61 (2014).

    ADS  CAS  Article  Google Scholar 

  182. 182.

    Saubin, E. et al. Conduit dynamics in transitional rhyolitic activity recorded by tuffisite vein textures from the 2008–2009 Chaitén Eruption. Front. Earth Sci. 4 (2016).

  183. 183.

    Lamur, A., Kendrick, J. E., Wadsworth, F. B. & Lavallée, Y. Fracture healing and strength recovery in magmatic liquids. Geology 47, 195–198 (2019).

    ADS  CAS  Article  Google Scholar 

  184. 184.

    Hildreth, W., Halliday, A. N. & Christiansen, R. L. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the yellowstone plateau volcanic field. J. Petrol. 32, 63–138 (1991).

    ADS  CAS  Article  Google Scholar 

  185. 185.

    Gomberg, J., Bodin, P. & Reasenberg, P. A. Observing earthquakes triggered in the near field by dynamic deformations. Bull. Seismol. Soc. Am. 93, 118–138 (2003).

    Article  Google Scholar 

  186. 186.

    Somerville, P. & Yoshimura, J. The influence of critical Moho Reflections on strong ground motions recorded in San Francisco and Oakland during the 1989 Loma Prieta Earthquake. Geophys. Res. Lett. 17, 1203–1206 (1990).

    ADS  Article  Google Scholar 

  187. 187.

    Davis, P. M., Rubinstein, J. L., Liu, K. H., Gao, S. S. & Knopoff, L. Northridge earthquake caused by geologic focusing of seismic waves. Science 289, 1746–1750 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  188. 188.

    Mori, J. & Helmberger, D. Large-amplitude moho reflections (SmS) from Landers aftershocks, Southern California. Bull. Seismol. Soc. Am. 86, 1845–1852 (1996).

    Google Scholar 

  189. 189.

    Hough, S. E. Remotely triggered earthquakes following moderate mainshocks (or, why California is not falling into the ocean). Seismol. Res. Lett. 76, 58–66 (2005).

    Article  Google Scholar 

  190. 190.

    Zhu, W., Ni, S., Zeng, X. & Somerville, P. The contribution of postcritical moho reflections SmS to ground motions of the 2008 M w 7.9 wenchuan earthquake. Bull. Seismol. Soc. Am. 109, 298–311 (2019).

    Article  Google Scholar 

  191. 191.

    Paolucci, R. Amplification of earthquake ground motion by steep topographic irregularities. Earthq. Eng. Struct. Dyn. 31, 1831–1853 (2002).

    Article  Google Scholar 

  192. 192.

    Langer, S., Finzi, Y. & Olsen-Kettle, L. M. Dynamic triggering of earthquakes is promoted by crustal heterogeneities and bimaterial faults. Phys. Earth Planet. Inter. 238, 34–41 (2015).

    ADS  Article  Google Scholar 

  193. 193.

    Wallace, L. M. et al. Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nat. Geosci. 10, 765–770 (2017).

    ADS  CAS  Article  Google Scholar 

  194. 194.

    Farías, C., Galván, B. & Miller, S. A. Numerical simulations (2D) on the influence of pre-existing local structures and seismic source characteristics in earthquake-volcano interactions. J. Volcanol. Geotherm. Res. 343, 192–210 (2017).

    ADS  Article  CAS  Google Scholar 

  195. 195.

    Biggs, J., Chivers, M. & Hutchinson, M. C. Surface deformation and stress interactions during the 2007–2010 sequence of earthquake, dyke intrusion and eruption in northern Tanzania. Geophys. J. Int. 195, 16–26 (2013).

  196. 196.

    Kumagai, H. & Chouet, B. A. Acoustic properties of a crack containing magmatic or hydrothermal fluids. J. Geophys. Res. Solid Earth 105, 25493–25512 (2000).

    CAS  Article  Google Scholar 

  197. 197.

    Nakano, M. & Kumagai, H. Response of a hydrothermal system to magmatic heat inferred from temporal variations in the complex frequencies of long-period events at Kusatsu-Shirane Volcano, Japan. J. Volcanol. Geotherm. Res. 147, 233–244 (2005).

    ADS  CAS  Article  Google Scholar 

  198. 198.

    Rudolph, M. L. & Manga, M. Frequency dependence of mud volcano response to earthquakes. Geophys. Res. Lett. 39, 1–5 (2012).

    Google Scholar 

  199. 199.

    Toda, S., Stein, R. S., Sevilgen, V. & Lin, J. Coulomb 3.3 graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching - user guide. US Geol. Surv. Open-File Rep. 1060, 63 (2011).

  200. 200.

    Gabrieli, A., Wilson, L. & Lane, S. Volcano–tectonic interactions as triggers of volcanic eruptions. Proc. Geol. Assoc. 126, 675–682 (2015).

    Article  Google Scholar 

  201. 201.

    Feuillet, N., Cocco, M., Musumeci, C. & Nostro, C. Stress interaction between seismic and volcanic activity at Mt. Etna. Geophys. J. Int. 164, 697–718 (2006).

    ADS  Article  Google Scholar 

  202. 202.

    Walter, T. R. et al. Volcanic activity influenced by tectonic earthquakes: static and dynamic stress triggering at Mt. Merapi. Geophys. Res. Lett. 34, L05304 (2007).

    ADS  Article  Google Scholar 

  203. 203.

    Kriswati, E., Meilano, I., Iguchi, M., Abidin, H. Z. & Surono An evaluation of the possibility of tectonic triggering of the Sinabung eruption. J. Volcanol. Geotherm. Res. 382, 224–232 (2019).

    ADS  CAS  Article  Google Scholar 

  204. 204.

    Kennedy, B. What effects do earthquakes have on volcanoes? Geology 45, 765–766 (2017).

    ADS  Article  Google Scholar 

  205. 205.

    Jolly, A., Lokmer, I., Christenson, B. & Thun, J. Relating gas ascent to eruption triggering for the April 27, 2016, White Island (Whakaari), New Zealand eruption sequence. Earth Planets Space 70, 177 (2018).

    ADS  Article  Google Scholar 

  206. 206.

    Aizawa, K. et al. Gas pathways and remotely triggered earthquakes beneath Mount Fuji, Japan. Geology 44, 127–130 (2016).

    ADS  CAS  Article  Google Scholar 

  207. 207.

    Ozawa, T. & Fujita, E. Local deformations around volcanoes associated with the 2011 off the Pacific coast of Tohoku earthquake. J. Geophys. Res. Solid Earth 118, 390–405 (2013).

    ADS  Article  Google Scholar 

  208. 208.

    Stein, R. S., Barka, A. A. & Dieterich, J. H. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys. J. Int. 128, 594–604 (1997).

    ADS  Article  Google Scholar 

  209. 209.

    Potter, S. H., Jolly, G. E., Neall, V. E., Johnston, D. M. & Scott, B. J. Communicating the status of volcanic activity: revising New Zealand’s volcanic alert level system. J. Appl. Volcanol. 3, 1–16 (2014).

    Article  Google Scholar 

  210. 210.

    Davis, M., Koenders, M. A. & Petford, N. Vibro-agitation of chambered magma. J. Volcanol. Geotherm. Res. 167, 24–36 (2007).

    ADS  CAS  Article  Google Scholar 

  211. 211.

    Sumita, I. & Manga, M. Suspension rheology under oscillatory shear and its geophysical implications. Earth Planet. Sci. Lett. 269, 467–476 (2008).

    ADS  CAS  Article  Google Scholar 

  212. 212.

    Okubo, P. G. & Wolfe, C. J. Swarms of similar long-period earthquakes in the mantle beneath Mauna Loa Volcano. J. Volcanol. Geotherm. Res. 178, 787–794 (2008).

    ADS  CAS  Article  Google Scholar 

  213. 213.

    Gottsmann, J., Lavallée, Y., Martí, J. & Aguirre-Díaz, G. Magma–tectonic interaction and the eruption of silicic batholiths. Earth Planet. Sci. Lett. 284, 426–434 (2009).

    ADS  CAS  Article  Google Scholar 

  214. 214.

    Christopher, T. E. et al. Crustal-scale degassing due to magma system destabilization and magma-gas decoupling at Soufrière Hills Volcano, Montserrat. Geochem. Geophys. Geosyst. 16, 2797–2811 (2015).

    ADS  CAS  Article  Google Scholar 

  215. 215.

    Miyazawa, M. Propagation of an earthquake triggering front from the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, 1–6 (2011).

    Article  Google Scholar 

  216. 216.

    Battaglia, J., Métaxian, J. P. & Garaebiti, E. Earthquake-volcano interaction imaged by coda wave interferometry. Geophys. Res. Lett. 39, 4–7 (2012).

    Article  Google Scholar 

  217. 217.

    Rouwet, D. et al. Recognizing and tracking volcanic hazards related to non-magmatic unrest: a review. J. Appl. Volcanol. 3, 1–17 (2014).

    Article  Google Scholar 

  218. 218.

    Phillipson, G., Sobradelo, R. & Gottsmann, J. Global volcanic unrest in the 21st century: an analysis of the first decade. J. Volcanol. Geotherm. Res. 264, 183–196 (2013).

    ADS  CAS  Article  Google Scholar 

  219. 219.

    Yukutake, Y. et al. Remotely triggered seismic activity in Hakone volcano during and after the passage of surface waves from the 2011 M9.0 Tohoku-Oki earthquake. Earth Planet. Sci. Lett. 373, 205–216 (2013).

    ADS  CAS  Article  Google Scholar 

  220. 220.

    Lupi, M., Fuchs, F. & Pacheco, J. F. Fault reactivation due to the M 7.6 Nicoya earthquake at the Turrialba-Irazú volcanic complex, Costa Rica: effects of dynamic stress triggering. Geophys. Res. Lett. 41, 4142–4148 (2014).

    ADS  Article  Google Scholar 

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel