- 1.
Nunn, P. D. Lashed by sharks, pelted by demons, drowned for apostasy: the value of myths that explain geohazards in the Asia-Pacific region. Asian Geogr. 31, 59–82 (2014).
- 2.
Troll, V. R. et al. Ancient oral tradition describes volcano–earthquake interaction at merapi volcano, indonesia. Geogr. Ann. Ser. A Phys. Geogr. 97, 137–166 (2015).
- 3.
Taggart, D. All the mountains shake, seismic and volcanic imagery in the Old Norse Literature of Þórr. Scr. Islandica Isl.ändska Sällskapets Årsb. 68, 99–122 (2017).
- 4.
Hill, D. P., Pollitz, F. F. & Newhall, C. G. Earthquake–volcano interactions. Phys. Today 55, 41–47 (2002).
- 5.
Linde, A. T. & Sacks, I. S. Triggering of volcanic eruptions. Nature 395, 888–890 (1998).
- 6.
Manga, M. & Brodsky, E. Seismic triggering of eruptions in the far field: volcanoes and geysers. Annu. Rev. Earth Planet. Sci. 34, 263–291 (2006).
- 7.
Bebbington, M. S. & Marzocchi, W. Stochastic models for earthquake triggering of volcanic eruptions. J. Geophys. Res. 116, B05204 (2011).
- 8.
Sawi, T. M. & Manga, M. Revisiting short-term earthquake triggered volcanism. Bull. Volcanol. 80, 57 (2018).
- 9.
Koyama, M. Mechanical coupling between volcanic unrests and large earthquakes: a review of examples and mechanisms. J. Geogr. 111, 222–232 (2002).
- 10.
Eggert, S. & Walter, T. R. Volcanic activity before and after large tectonic earthquakes: observations and statistical significance. Tectonophysics 471, 14–26 (2009).
- 11.
Watt, S. F. L., Pyle, D. M. & Mather, T. A. The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone. Earth Planet. Sci. Lett. 277, 399–407 (2009).
- 12.
Latter, J. H. The interdependence of seismic and volcanic phenomena: some space — Time relationships in seismicity and volcanism. Bull. Volcanol. 35, 127–142 (1971).
- 13.
Yamashina, K. & Nakamura, K. Correlations between tectonic earthquakes and volcanic activity of Izu-Oshima Volcano, Japan. J. Volcanol. Geotherm. Res. 4, 233–250 (1978).
- 14.
Ebmeier, S. K. et al. Shallow earthquake inhibits unrest near Chiles–Cerro Negro volcanoes, Ecuador–Colombian border. Earth Planet. Sci. Lett. 450, 283–291 (2016).
- 15.
Farías, C. & Basualto, D. Reactivating and calming volcanoes: the 2015 MW 8.3 Illapel megathrust strike. Geophys. Res. Lett. 47, 1–10 (2020).
- 16.
Bonali, F. L., Tibaldi, A., Corazzato, C., Tormey, D. R. & Lara, L. E. Quantifying the effect of large earthquakes in promoting eruptions due to stress changes on magma pathway: the Chile case. Tectonophysics 583, 54–67 (2013).
- 17.
Avouris, D. M., Carn, S. A. & Waite, G. P. Triggering of volcanic degassing by large earthquakes. Geology 45, G39074.1 (2017).
- 18.
MacGregor, A. G. Prediction in relation to seismo-volcanic phenomena in the caribbean volcanic arc. Bull. Volcanol. 8, 69–86 (1949).
- 19.
Yokoyama, I. Volcanic eruptions triggered by tectonic earthquakes. Geophys. Bull. Hokkaido Univ. 25, 129–139 (1971).
- 20.
Tilling, R. I. et al. Earthquakes and related catastrophic events, Island of Hawaii, November 29, 1975; A preliminary report. Geol. Surv. https://doi.org/10.3133/cir740 (1976).
- 21.
Barquero, R., Lesage, P., Metaxian, J. P., Creusot, A. & Fernández, M. La crisis sismica en el Volcán Irazú en 1991 (Costa Rica). Rev. Geol. Amer. Central 18, 5–18 (1995).
- 22.
Carbone, D., Jousset, P. & Musumeci, C. Gravity “steps” at Mt. Etna volcano (Italy): Instrumental effects or evidences of earthquake-triggered magma density changes? Geophys. Res. Lett. 36, (2009).
- 23.
Cannata, A. et al. Response of Mount Etna to dynamic stresses from distant earthquakes. J. Geophys. Res. Solid Earth 115, 1–18 (2010).
- 24.
Yamazaki, K., Teraishi, M., Komatsu, S., Sonoda, Y. & Kano, Y. On the possibility of the 2011 Tohoku-oki earthquake reactivating Shinmoe-dake volcano, southwest Japan: Insights from strain data measured in vaults. Nat. Hazards Earth Syst. Sci. 11, 2655–2661 (2011).
- 25.
Mora-Stock, C. et al. Comparison of seismic activity for Llaima and Villarrica volcanoes prior to and after the Maule 2010 earthquake. Int. J. Earth Sci. 103, 2015–2028 (2014).
- 26.
Harris, A. J. L. & Ripepe, M. Regional earthquake as a trigger for enhanced volcanic activity: evidence from MODIS thermal data. Geophys. Res. Lett. 34, 1–6 (2007).
- 27.
Delle Donne, D., Harris, A. J. L., Ripepe, M. & Wright, R. Earthquake-induced thermal anomalies at active volcanoes. Geology 38, 771–774 (2010).
- 28.
Hill-Butler, C., Blackett, M., Wright, R. & Trodd, N. The co-incidence of earthquakes and volcanoes: assessing global volcanic radiant flux responses to earthquakes in the 21st century. J. Volcanol. Geotherm. Res. 393, 106770 (2020).
- 29.
La Femina, P. C., Connor, C. B., Hill, B. E., Strauch, W. & Saballos, J. A. Magma–tectonic interactions in Nicaragua: the 1999 seismic swarm and eruption of Cerro Negro volcano. J. Volcanol. Geotherm. Res. 137, 187–199 (2004).
- 30.
Higgins, M. D. The Cascadia megathrust earthquake of 1700 may have rejuvenated an isolated basalt volcano in western Canada: age and petrographic evidence. J. Volcanol. Geotherm. Res. 179, 149–156 (2009).
- 31.
Allan, A. S. R., Wilson, C. J. N., Millet, M. A. & Wysoczanski, R. J. The invisible hand: tectonic triggering and modulation of a rhyolitic supereruption. Geology 40, 563–566 (2012).
- 32.
Barrientos, S. E. Large thrust earthquakes and volcanic eruptions. Pure Appl. Geophys. 142, 225–237 (1994).
- 33.
Walter, T. R. & Amelung, F. Volcanic eruptions following M ≥ 9 megathrust earthquakes: implications for the Sumatra-Andaman volcanoes. Geology 35, 539–542 (2007).
- 34.
Walter, T. R. et al. Simultaneous magma and gas eruptions at three volcanoes in southern Italy: an earthquake trigger? Geology 37, 251–254 (2009).
- 35.
Hamling, I. J. & Kilgour, G. Goldilocks conditions required for earthquakes to trigger basaltic eruptions: Evidence from the 2015 Ambrym eruption. Sci. Adv. 6, eaaz5261 (2020).
- 36.
Carniel, R., Di Cecca, M. & Rouland, D. Ambrym, Vanuatu (July–August 2000): spectral and dynamical transitions on the hours-to-days timescale. J. Volcanol. Geotherm. Res. 128, 1–13 (2003).
- 37.
Ortiz, R. et al. Villarrica volcano (Chile): characteristics of the volcanic tremor and forecasting of small explosions by means of a material failure method. J. Volcanol. Geotherm. Res. 128, 247–259 (2003).
- 38.
Tárraga, M. et al. Dynamical parameter analysis of continuous seismic signals of Popocatépetl volcano (Central Mexico): a case of tectonic earthquakes influencing volcanic activity. Acta Geophys. 60, 664–681 (2012).
- 39.
Jousset, P. et al. Signs of magma ascent in LP and VLP seismic events and link to degassing: an example from the 2010 explosive eruption at Merapi volcano, Indonesia. J. Volcanol. Geotherm. Res. 261, 171–192 (2013).
- 40.
Carr, B. B., Clarke, A. B. & de’ Michieli Vitturi, M. Earthquake induced variations in extrusion rate: a numerical modeling approach to the 2006 eruption of Merapi Volcano (Indonesia). Earth Planet. Sci. Lett. 482, 377–387 (2018).
- 41.
Prejean, S. G. et al. Remotely triggered seismicity on the United States West Coast following the Mw 7.9 Denali fault earthquake. Bull. Seismol. Soc. Am. 94, S348–S359 (2004).
- 42.
Moran, S. C., Power, J. A., Stihler, S. D., Sánchez, J. J. & Caplan-Auerbach, J. Earthquake triggering at Alaskan volcanoes following the 3 November 2002 Denali fault earthquake. Bull. Seismol. Soc. Am. 94, S300–S309 (2004).
- 43.
Yukutake, Y. et al. Remotely-triggered seismicity in the Hakone volcano following the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63, 737–740 (2011).
- 44.
Farías, C., Lupi, M., Fuchs, F. & Miller, S. A. Seismic activity of the Nevados de Chillán volcanic complex after the 2010 Mw8.8 Maule, Chile, earthquake. J. Volcanol. Geotherm. Res. 283, 116–126 (2014).
- 45.
Lin, C. H. Dynamic triggering of volcano drumbeat-like seismicity at the Tatun volcano group in Taiwan. Geophys. J. Int. 210, 354–359 (2017).
- 46.
Cigolini, C., Laiolo, M. & Coppola, D. Earthquake – volcano interactions detected from radon degassing at Stromboli (Italy). Earth Planet. Sci. Lett. 257, 511–525 (2007).
- 47.
Gresse, M., Vandemeulebrouck, J., Byrdina, S., Chiodini, G. & Bruno, P. P. Changes in CO2 diffuse degassing induced by the passing of seismic waves. J. Volcanol. Geotherm. Res. 320, 12–18 (2016).
- 48.
Madonia, P., Cusano, P., Diliberto, I. S. & Cangemi, M. Thermal anomalies in fumaroles at Vulcano island (Italy) and their relationship with seismic activity. Phys. Chem. Earth A/B/C 63, 160–169 (2013).
- 49.
Takada, Y. & Fukushima, Y. Volcanic subsidence triggered by the 2011 Tohoku earthquake in Japan. Nat. Geosci. 6, 637–641 (2013).
- 50.
Pritchard, M. E., Jay, J. A., Aron, F., Henderson, S. T. & Lara, L. E. Subsidence at southern Andes volcanoes induced by the 2010 Maule, Chile earthquake. Nat. Geosci. 6, 632–636 (2013).
- 51.
Marler, G. D. & White, D. E. Seismic geyser and its bearing on the origin and evolution of geysers and hot springs of Yellowstone National Park. Geol. Soc. Am. Bull. 86, 749 (1975).
- 52.
Hill, D. P. et al. Seismicity remotely triggered by the magnitude 7.3 Landers, California, Earthquake. Science 260, 1617–1623 (1993).
- 53.
Husen, S., Taylor, R., Smith, R. B. & Healser, H. Changes in geyser eruption behavior and remotely triggered seismicity in Yellowstone National Park produced by the 2002 M 7.9 Denali fault earthquake, Alaska. Geology 32, 537 (2004).
- 54.
Rouwet, D., Mora-Amador, R., Ramírez-Umaña, C. J., González, G. & Inguaggiato, S. Dynamic fluid recycling at Laguna Caliente (Poás, Costa Rica) before and during the 2006 - ongoing phreatic eruption cycle (2005-10). In Geochemistry and Geophysics of Active Volcanic Lakes (eds Ohba, T., Capaccioni, B. & Caudron, C.) (The Geological Society of London, 2016).
- 55.
Hurwitz, S. & Manga, M. The fascinating and complex dynamics of geyser eruptions. Annu. Rev. Earth Planet. Sci. 45, 31–59 (2017).
- 56.
Nishimura, T. Triggering of volcanic eruptions by large earthquakes. Geophys. Res. Lett. 44, 7750–7756 (2017).
- 57.
Marzocchi, W. Remote seismic influence on large explosive eruptions. J. Geophys. Res. 107, EPM 6-1–EPM 6-7 (2002).
- 58.
Alam, M. & Kimura, M. Statistical analysis of time-distance relationship between volcanic eruptions and great earthquakes in Japan. Earth Planets Space 56, 179–192 (2004).
- 59.
Manga, M. et al. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Rev. Geophys. 50, (2012).
- 60.
Mazzini, A. & Etiope, G. Mud volcanism: an updated review. Earth-Sci. Rev. 168, 81–112 (2017).
- 61.
Marzocchi, W., Casarotti, E. & Piersanti, A. Modeling the stress variations induced by great earthquakes on the largest volcanic eruptions of the 20th century. J. Geophys. Res. Solid Earth 107, ESE 13-1–ESE 13-8 (2002).
- 62.
West, M., Sánchez, J. J. & McNutt, S. R. Periodically triggered seismicity at Mount Wrangell, Alaska, after the Sumatra Earthquake. Science 308, 1144–1146 (2005).
- 63.
Wang, C.‐Y. & Manga, M. Hydrologic responses to earthquakes and a general metric. Geofluids 10, 206–216 (2010).
- 64.
Sulpizio, R. & Massaro, S. Influence of stress field changes on eruption initiation and dynamics: a review. Front. Earth Sci. 5, 1–11 (2017).
- 65.
Steacy, S., Gomberg, J. & Cocco, M. Introduction to special section: stress transfer, earthquake triggering, and time-dependent seismic hazard. J. Geophys. Res. Solid Earth 110, 1–12 (2005).
- 66.
Nakamura, K. Volcano structure and possible mechanical correlation between volcanic eruptions and earthquakes. Bull. Volcanol. Soc. Jpn. Second Ser. 20, 229–240 (1975).
- 67.
Nostro, C., Stein, R. S., Cocco, M., Belardinelli, M. E. & Marzocchi, W. Two-way coupling between Vesuvius eruptions and southern Apennine earthquakes, Italy, by elastic stress transfer. J. Geophys. Res. Solid Earth 103, 24487–24504 (1998).
- 68.
Díez, M., La Femina, P. C., Connor, C. B., Strauch, W. & Tenorio, V. Evidence for static stress changes triggering the 1999 eruption of Cerro Negro Volcano, Nicaragua and regional aftershock sequences. Geophys. Res. Lett. 32, 1–4 (2005).
- 69.
Walter, T. R. & Amelung, F. Volcano-earthquake interaction at Mauna Loa volcano, Hawaii. J. Geophys. Res. 111, B05204 (2006).
- 70.
Walter, T. R. How a tectonic earthquake may wake up volcanoes: Stress transfer during the 1996 earthquake–eruption sequence at the Karymsky Volcanic Group, Kamchatka. Earth Planet. Sci. Lett. 264, 347–359 (2007).
- 71.
Wang, F., Kang, S. Z., Zhao, W. Y. & Min, W. Influence of the March 11, 2011 Mw 9.0 Tohoku-oki earthquake on regional volcanic activities. Chin. Sci. Bull. 56, 2077–2081 (2011).
- 72.
Chesley, C., La Femina, P. C., Puskas, C. & Kobayashi, D. The 1707 M w 8.7 Hoei earthquake triggered the largest historical eruption of Mt. Fuji. Geophys. Res. Lett. 39, 2012GL053868 (2012).
- 73.
Bonali, F. L. Earthquake-induced static stress change on magma pathway in promoting the 2012 Copahue eruption. Tectonophysics 608, 127–137 (2013).
- 74.
Ozawa, T., Fujita, E. & Ueda, H. Crustal deformation associated with the 2016 Kumamoto Earthquake and its effect on the magma system of Aso volcano. Earth, Planets Space 68 (2016).
- 75.
Gregg, P. M. et al. Stress triggering of the 2005 eruption of Sierra Negra Volcano, Galápagos. Geophys. Res. Lett. 45, 288–13,297 (2018).
- 76.
Shimomura, Y., Nishimura, T. & Sato, H. Bubble growth processes in magma surrounded by an elastic medium. J. Volcanol. Geotherm. Res. 155, 307–322 (2006).
- 77.
Ichihara, M. & Nishimura, T. Pressure impulses generated by bubbles interacting with ambient perturbation. In Extreme Environmental Events: Complexity in Forecasting and Early Warning (ed. Meyers, R. A.) 731–752 (Springer, 2009).
- 78.
Lupi, M. & Miller, S. A. Short-lived tectonic switch mechanism for long-term pulses of volcanic activity after mega-thrust earthquakes. Solid Earth 5, 13–24 (2014).
- 79.
Pérez-Flores, P. et al. The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile. J. Struct. Geol. 104, 142–158 (2017).
- 80.
Kimura, M. Significant eruptive activities related to large interplate earthquakes in the northwestern Pacific margin. J. Phys. Earth 26, S557–S570 (1978).
- 81.
McNutt, S. R. & Beavan, R. J. Eruptions of Pavlof Volcano and their possible modulation by ocean load and tectonic stresses. J. Geophys. Res. Solid Earth 92, 11509–11523 (1987).
- 82.
Kimura, M. Relationship between volcanic eruption and large earthquakes in the vicinity of Japan. Annu. Rev. Fluid Mech. 37, 293–317 (1994).
- 83.
Bautista, B. C. et al. Relationship of regional and local structures to Mount Pinatubo activity. In Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines (eds Newhall, C. G. & Punongbayan, R. S.) 351–370 (Philippine Institute of Volcanology and Seismology, 1996).
- 84.
Rikitake, T. & Sato, R. Up-squeezing of magma under tectonic stress. J. Phys. Earth 37, 303–311 (1989).
- 85.
Jónsson, S. Stress interaction between magma accumulation and trapdoor faulting on Sierra Negra volcano, Galápagos. Tectonophysics 471, 36–44 (2009).
- 86.
Maccaferri, F., Rivalta, E., Passarelli, L. & Aoki, Y. On the mechanisms governing dike arrest: Insight from the 2000 Miyakejima dike injection. Earth Planet. Sci. Lett. 434, 64–74 (2016).
- 87.
Xu, W., Jónsson, S., Corbi, F. & Rivalta, E. Graben formation and dike arrest during the 2009 Harrat Lunayyir dike intrusion in Saudi Arabia: insights from InSAR, stress calculations and analog experiments. J. Geophys. Res. Solid Earth 121, 2837–2851 (2016).
- 88.
Nur, A. & Mavko, G. Postseismic viscoelastic rebound. Science 183, 204–206 (1974).
- 89.
Pollitz, F. F. Postseismic relaxation theory on the spherical Earth. Bull. Seismol. Soc. Am. 82, 422–453 (1992).
- 90.
Hill, D. P. & Prejean, S. G. Dynamic triggering. In Treatise on Geophysics (ed. Schubert, G.) 274–304 (Elsevier B.V., 2015).
- 91.
Lay, T. & Wallace, T. C. Modern Global Seismology (Academic Press, 1995).
- 92.
Gomberg, J., Reasenberg, P. A., Bodin, P. & Harris, R. A. Earthquake triggering by seismic waves following the landers and hector mine earthquakes. Nature 411, 462–466 (2001).
- 93.
Young, F. R. Cavitation (Imperial College Press, 1989).
- 94.
Crews, J. B. & Cooper, C. A. Experimental evidence for seismically initiated gas bubble nucleation and growth in groundwater as a mechanism for coseismic borehole water level rise and remotely triggered seismicity. J. Geophys. Res. Solid Earth 119, 7079–7091 (2014).
- 95.
Shea, T. Bubble nucleation in magmas: a dominantly heterogeneous process? J. Volcanol. Geotherm. Res. 343, 155–170 (2017).
- 96.
Mangan, M. & Sisson, T. Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet. Sci. Lett. 183, 441–455 (2000).
- 97.
Hurwitz, S. & Navon, O. Bubble nucleation in rhyolitic melts: Experiments at high pressure, temperature, and water content. Earth Planet. Sci. Lett. 122, 267–280 (1994).
- 98.
Carey, R. J. et al. Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema’uma’u Overlook vent, Kīlauea, Hawai’i, USA. J. Geophys. Res. Solid Earth 117 (2012).
- 99.
Eller, A. I. & Flynn, H. G. Rectified diffusion during nonlinear pulsations of cavitation bubbles. J. Acoust. Soc. Am. 37, 493–503 (1965).
- 100.
Sturtevant, B., Kanamori, H. & Brodsky, E. E. Seismic triggering by rectified diffusion in geothermal systems. J. Geophys. Res. Solid Earth 101, 25269–25282 (1996).
- 101.
Brodsky, E. E., Sturtevant, B. & Kanamori, H. Earthquakes, volcanoes, and rectified diffusion. J. Geophys. Res. Solid Earth 103, 23827–23838 (1998).
- 102.
Ichihara, M. & Brodsky, E. E. A limit on the effect of rectified diffusion in volcanic systems. Geophys. Res. Lett. 33, L02316 (2006).
- 103.
Lautze, N. C., Sisson, T. W., Mangan, M. T. & Grove, T. L. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas. Contrib. Mineral. Petrol. 161, 331–347 (2011).
- 104.
Masotta, M. & Keppler, H. A new hydrothermal moissanite cell apparatus for optical in-situ observations at high pressure and high temperature, with applications to bubble nucleation in silicate melts. Am. Mineral. 102, 2022–2031 (2017).
- 105.
Igualada-Villodre, E., Medina-Palomo, A., Vega-Martínez, P. & Rodríguez-Rodríguez, J. Transient effects in the translation of bubbles insonated with acoustic pulses of finite duration. J. Fluid Mech. 836, 649–693 (2018).
- 106.
Sahagian, D. L. & Proussevitch, A. A. Bubbles in volcanic systems. Nature 359, 485 (1992).
- 107.
Linde, A. T., Sacks, I. S., Johnston, M. J. S., Hill, D. P. & Bilham, R. G. Increased pressure from rising bubbles as a mechanism for remotely triggered seismicity. Nature 371, 408–410 (1994).
- 108.
Czekaluk, E. B. Osnovy piezometrii zalegei nefti i gaza (in Russian). Gostechizdat (1961).
- 109.
Steinberg, G. S., Steinberg, A. S. & Merzhanov, A. G. Fluid mechanism of pressure growth in volcanic (magmatic) systems. Mod. Geol. 13, 257–265 (1989).
- 110.
Bagdassarov, N. Pressure and volume changes in magmatic systems due to the vertical displacement of compressible materials. J. Volcanol. Geotherm. Res. 63, 95–100 (1994).
- 111.
Pyle, D. M. & Pyle, D. L. Bubble migration and the initiation of volcanic eruptions. J. Volcanol. Geotherm. Res. 67, 227–232 (1995).
- 112.
Woith, H. et al. Heterogeneous response of hydrogeological systems to the Izmit and Düzce (Turkey) earthquakes of 1999. Hydrogeol. J. 11, 113–121 (2003).
- 113.
Iwata, S., Yamada, Y., Takashima, T. & Mori, H. Pressure-oscillation defoaming for viscoelastic fluid. J. Nonnewton. Fluid Mech. 151, 30–37 (2008).
- 114.
De Corato, M., Dimakopoulos, Y. & Tsamopoulos, J. The rising velocity of a slowly pulsating bubble in a shear-thinning fluid. Phys. Fluids 31, 083103 (2019).
- 115.
Namiki, A., Rivalta, E., Woith, H. & Walter, T. R. Sloshing of a bubbly magma reservoir as a mechanism of triggered eruptions. J. Volcanol. Geotherm. Res. 320, 156–171 (2016).
- 116.
Miles, J. W. On the sloshing of liquid in a cylindrical tank. Report from The Ramo-Wooldridge Corporation, Cruided Missile Research Division, Aeromechanics Section (1956).
- 117.
Housner, G. W. Dynamic pressures on accelerated fluid containers. Bull. Seismol. Soc. Am. 47, 15–35 (1957).
- 118.
Abramson, H. N. The Dynamic Behavior of Liquids in Moving Containers Vol. SP-106 (National Aeronautics and Space Administration, 1966).
- 119.
Namiki, A. et al. Volcanic activities triggered or inhibited by resonance of volcanic edifices to large earthquakes. Geology 47, 67–70 (2018).
- 120.
Browne, P. R. & Lawless, J. Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere. Earth-Sci. Rev. 52, 299–331 (2001).
- 121.
Peng, Z., Hill, D. P., Shelly, D. R. & Aiken, C. Remotely triggered microearthquakes and tremor in central California following the 2010 Mw 8.8 Chile earthquake. Geophys. Res. Lett. 37 (2010).
- 122.
Jay, J. A. et al. Shallow seismicity, triggered seismicity, and ambient noise tomography at the long-dormant Uturuncu Volcano, Bolivia. Bull. Volcanol. 74, 817–837 (2012).
- 123.
Surve, G. & Mohan, G. Possible evidence of remotely triggered and delayed seismicity due to the 2001 Bhuj earthquake (Mw = 7.6) in western India. Nat. Hazards 64, 299–310 (2012).
- 124.
Drake, B. D. et al. Evolution of a dynamic paleo-hydrothermal system at Mangatete, Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 282, 19–35 (2014).
- 125.
Kosuga, M. Seismic activity near the Moriyoshi-zan volcano in Akita Prefecture, northeastern Japan: Implications for geofluid migration and a midcrustal geofluid reservoir Geofluid processes in subduction zones and mantle dynamics. Earth Planets Space 66, 1–16 (2014).
- 126.
Hurwitz, S., Sohn, R. A., Luttrell, K. & Manga, M. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather. J. Geophys. Res. Solid Earth 119, 1718–1737 (2014).
- 127.
Lin, C. H. Probable dynamic triggering of phreatic eruption in the Tatun volcano group of Taiwan. J. Asian Earth Sci. 149, 78–85 (2017).
- 128.
Girault, F. et al. Persistent CO2 emissions and hydrothermal unrest following the 2015 earthquake in Nepal. Nat. Commun. 9, 2956 (2018).
- 129.
Peng, Z. et al. Remote triggering of microearthquakes and tremor in New Zealand following the 2016 Mw 7.8 Kaikōura earthquake. Bull. Seismol. Soc. Am. 108, 1784–1793 (2018).
- 130.
Loame, R. C. et al. Using paleoseismology and tephrochronology to reconstruct fault rupturing and hydrothermal activity since c. 40 ka in Taupo Rift, New Zealand. Quat. Int. 500, 52–70 (2019).
- 131.
Saade, M. et al. Evidence of reactivation of a hydrothermal system from seismic anisotropy changes. Nat. Commun. 10, 1–8 (2019).
- 132.
Farías, C. & Galván, B. Numerical wave propagation study of the unusual response of Nevados de Chillán volcano to two aftershocks of the 2010 MW = 8.8 Maule earthquake. J. Volcanol. Geotherm. Res. 389, 106735 (2020).
- 133.
Revil, A. et al. Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self-potential, soil temperature and soil CO2 concentration measurements. Geophys. J. Int. 186, 1078–1094 (2011).
- 134.
Vargas, C. A. et al. Breathing of the Nevado del Ruiz volcano reservoir, Colombia, inferred from repeated seismic tomography. Sci. Rep. 7, 8–13 (2017).
- 135.
Healy, J., Lloyd, E. F., Banwell, C. J. & Adams, R. D. Volcanic eruption on Raoul Island, November 1964. Nature 205, 743–745 (1965).
- 136.
Christenson, B. W. et al. Hazards from hydrothermally sealed volcanic conduits. EOS Trans. Am. Geophys. Union 88, 53–55 (2007).
- 137.
Lupi, M. et al. Regional earthquakes followed by delayed ground uplifts at Campi Flegrei Caldera, Italy: Arguments for a causal link. Earth Planet. Sci. Lett. 474, 436–446 (2017).
- 138.
Jolly, A. D. On the shallow volcanic response to remote seismicity. Geology 47, 95–96 (2019).
- 139.
Elkhoury, J. E., Brodsky, E. E. & Agnew, D. C. Seismic waves increase permeability. Nature 441, 1135–1138 (2006).
- 140.
Wang, C. -Y. & Manga, M. Earthquakes and Water Vol. 114 (Springer, 2009).
- 141.
Rojstaczer, S., Wolf, S. & Michel, R. Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature 373, 237–239 (1995).
- 142.
Manga, M., Brodsky, E. E. & Boone, M. Response of streamflow to multiple earthquakes. Geophys. Res. Lett. 30 (2003).
- 143.
Rojstaczer, S. & Wolf, S. Permeability changes associated with large earthquakes: an example from Loma Prieta, California. Geology 20, 211–214 (1992).
- 144.
Roeloffs, E. A. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J. Geophys. Res. Solid Earth 103, 869–889 (1998).
- 145.
Kocharyan, G. G. et al. Hydrologic response of underground reservoirs to seismic vibrations. Izv. Phys. Solid Earth 47, 1071–1082 (2011).
- 146.
Yan, R., Woith, H. & Wang, R. Groundwater level changes induced by the 2011 Tohoku earthquake in China mainland. Geophys. J. Int. 199, 533–548 (2014).
- 147.
Weaver, K. C. et al. Seismological and hydrogeological controls on New Zealand-wide groundwater level changes induced by the 2016 M w 7.8 Kaikōura earthquake. Geofluids 2019, 1–18 (2019).
- 148.
Mogi, K., Mochizuki, H. & Kurokawa, Y. Temperature changes in an artesian spring at Usami in the Izu Peninsula (Japan) and their relation to earthquakes. Tectonophysics 159, 95–108 (1989).
- 149.
Demezhko, D. Y., Yurkov, A. K., Outkin, V. I. & Shchapov, V. A. Temperature changes in the KUN-1 borehole, Kunashir Island, induced by the Tohoku Earthquake (March 11, 2011, M = 9.0). Dokl. Earth Sci. 445, 883–887 (2012).
- 150.
He, A. & Singh, R. P. Coseismic groundwater temperature response associated with the Wenchuan earthquake. Pure Appl. Geophys. 177, 109–120 (2020).
- 151.
Mellors, R., Kilb, D., Aliyev, A., Gasanov, A. & Yetirmishli, G. Correlations between earthquakes and large mud volcano eruptions. J. Geophys. Res. Solid Earth 112 (2007).
- 152.
Manga, M., Brumm, M. & Rudolph, M. L. Earthquake triggering of mud volcanoes. Mar. Pet. Geol. 26, 1785–1798 (2009).
- 153.
Bonini, M., Rudolph, M. L. & Manga, M. Long- and short-term triggering and modulation of mud volcano eruptions by earthquakes. Tectonophysics 672–673, 190–211 (2016).
- 154.
Christenson, B. W. et al. Cyclic processes and factors leading to phreatic eruption events: insights from the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand. J. Volcanol. Geotherm. Res. 191, 15–32 (2010).
- 155.
Heap, M. J. et al. A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand). J. Volcanol. Geotherm. Res. 332, 88–108 (2017).
- 156.
Brodsky, E. E., Roeloffs, E., Woodcock, D., Gall, I. & Manga, M. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res. 108, 2390 (2003).
- 157.
Candela, T., Brodsky, E. E., Marone, C. & Elsworth, D. Laboratory evidence for particle mobilization as a mechanism for permeability enhancement via dynamic stressing. Earth Planet. Sci. Lett. 392, 279–291 (2014).
- 158.
Candela, T., Brodsky, E. E., Marone, C. & Elsworth, D. Flow rate dictates permeability enhancement during fluid pressure oscillations in laboratory experiments. J. Geophys. Res. Solid Earth 120, 2037–2055 (2015).
- 159.
Barbosa, N. D., Hunziker, J., Lissa, S., Saenger, E. H. & Lupi, M. Fracture unclogging: a numerical study of seismically induced viscous shear stresses in fluid-saturated fractured rocks. J. Geophys. Res. Solid Earth 124, 11705–11727 (2019).
- 160.
Shi, Y., Liao, X., Zhang, D. & Liu, C. Seismic waves could decrease the permeability of the shallow crust. Geophys. Res. Lett. 46, 6371–6377 (2019).
- 161.
Faoro, I., Elsworth, D. & Marone, C. Permeability evolution during dynamic stressing of dual permeability media. J. Geophys. Res. Solid Earth 117 (2012).
- 162.
Wang, C.-Y., Liao, X., Wang, L.-P., Wang, C.-H. & Manga, M. Large earthquakes create vertical permeability by breaching aquitards. Water Resour. Res. 52, 5923–5937 (2016).
- 163.
Shokouhi, P. et al. Dynamic stressing of naturally fractured rocks: on the relation between transient changes in permeability and elastic wave velocity. Geophys. Res. Lett. 47, 1–10 (2020).
- 164.
Fournier, R. O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 94, 1193–1211 (1999).
- 165.
Christiansen, R. L. & Peterson, D. W. Chronology of the 1980 eruptive activity. In The 1980 Eruptions of Mount St. Helens, Washington Geological Survey Professional Paper 1250 (eds Lipman, P. W. & Mullineaux, D. R.) 17–30 (USGS, 1981).
- 166.
McGuire, W. J. Volcano instability: a review of contemporary themes. Geol. Soc. Spec. Publ. 110, 1–23 (1996).
- 167.
Manconi, A., Longpe, M. A., Walter, T. R., Troll, V. R. & Hansteen, T. H. The effects of flank collapses on volcano plumbing systems. Geology 37, 1099–1102 (2009).
- 168.
Sandri, L., Acocella, V. & Newhall, C. Searching for patterns in caldera unrest. Geochem. Geophys. Geosyst. 18, 2748–2768 (2017).
- 169.
Stix, J. Understanding fast and slow unrest at volcanoes and implications for eruption forecasting. Front. Earth Sci. 6, 56 (2018).
- 170.
Johnson, H. P. et al. Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge. Nature 407, 174–177 (2000).
- 171.
Dziak, R. P., Chadwick, W. W., Fox, C. G. & Embley, R. W. Hydrothermal temperature changes at the southern Juan de Fuca Ridge associated with a Mw 6.2 Blanco Transform earthquake. Geology 31, 119–122 (2003).
- 172.
Špičák, A. & Vaněk, J. Earthquake swarms reveal submarine magma unrest induced by distant mega-earthquakes: Andaman Sea region. J. Asian Earth Sci. 116, 155–163 (2016).
- 173.
Vona, A., Romano, C., Dingwell, D. B. & Giordano, D. The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochim. Cosmochim. Acta 75, 3214–3236 (2011).
- 174.
Chevrel, M. O. et al. The viscosity of pāhoehoe lava: In situ syn-eruptive measurements from Kilauea, Hawaii. Earth Planet. Sci. Lett. 493, 161–171 (2018).
- 175.
Shaw, H. R. Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature range 700° to 900°C. J. Geophys. Res. 68, 6337–6343 (1963).
- 176.
Lejeune, A.-M. & Richet, P. Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J. Geophys. Res. Solid Earth 100, 4215–4229 (1995).
- 177.
Caricchi, L. et al. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet. Sci. Lett. 264, 402–419 (2007).
- 178.
Costa, A., Caricchi, L. & Bagdassarov, N. A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem. Geophys. Geosyst. 10 (2009).
- 179.
Villemant, B. & Boudon, G. Transition from dome-forming to plinian eruptive styles controlled by H2O and Cl degassing. Nature 392, 65–69 (1998).
- 180.
Edmonds, M., Oppenheimer, C., Pyle, D. M., Herd, R. A. & Thompson, G. SO2 emissions from Soufrière Hills Volcano and their relationship to conduit permeability, hydrothermal interaction and degassing regime. J. Volcanol. Geotherm. Res. 124, 23–43 (2003).
- 181.
Castro, J. M., Bindeman, I. N., Tuffen, H. & Ian Schipper, C. Explosive origin of silicic lava: textural and δD –H2O evidence for pyroclastic degassing during rhyolite effusion. Earth Planet. Sci. Lett. 405, 52–61 (2014).
- 182.
Saubin, E. et al. Conduit dynamics in transitional rhyolitic activity recorded by tuffisite vein textures from the 2008–2009 Chaitén Eruption. Front. Earth Sci. 4 (2016).
- 183.
Lamur, A., Kendrick, J. E., Wadsworth, F. B. & Lavallée, Y. Fracture healing and strength recovery in magmatic liquids. Geology 47, 195–198 (2019).
- 184.
Hildreth, W., Halliday, A. N. & Christiansen, R. L. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the yellowstone plateau volcanic field. J. Petrol. 32, 63–138 (1991).
- 185.
Gomberg, J., Bodin, P. & Reasenberg, P. A. Observing earthquakes triggered in the near field by dynamic deformations. Bull. Seismol. Soc. Am. 93, 118–138 (2003).
- 186.
Somerville, P. & Yoshimura, J. The influence of critical Moho Reflections on strong ground motions recorded in San Francisco and Oakland during the 1989 Loma Prieta Earthquake. Geophys. Res. Lett. 17, 1203–1206 (1990).
- 187.
Davis, P. M., Rubinstein, J. L., Liu, K. H., Gao, S. S. & Knopoff, L. Northridge earthquake caused by geologic focusing of seismic waves. Science 289, 1746–1750 (2000).
- 188.
Mori, J. & Helmberger, D. Large-amplitude moho reflections (SmS) from Landers aftershocks, Southern California. Bull. Seismol. Soc. Am. 86, 1845–1852 (1996).
- 189.
Hough, S. E. Remotely triggered earthquakes following moderate mainshocks (or, why California is not falling into the ocean). Seismol. Res. Lett. 76, 58–66 (2005).
- 190.
Zhu, W., Ni, S., Zeng, X. & Somerville, P. The contribution of postcritical moho reflections SmS to ground motions of the 2008 M w 7.9 wenchuan earthquake. Bull. Seismol. Soc. Am. 109, 298–311 (2019).
- 191.
Paolucci, R. Amplification of earthquake ground motion by steep topographic irregularities. Earthq. Eng. Struct. Dyn. 31, 1831–1853 (2002).
- 192.
Langer, S., Finzi, Y. & Olsen-Kettle, L. M. Dynamic triggering of earthquakes is promoted by crustal heterogeneities and bimaterial faults. Phys. Earth Planet. Inter. 238, 34–41 (2015).
- 193.
Wallace, L. M. et al. Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nat. Geosci. 10, 765–770 (2017).
- 194.
Farías, C., Galván, B. & Miller, S. A. Numerical simulations (2D) on the influence of pre-existing local structures and seismic source characteristics in earthquake-volcano interactions. J. Volcanol. Geotherm. Res. 343, 192–210 (2017).
- 195.
Biggs, J., Chivers, M. & Hutchinson, M. C. Surface deformation and stress interactions during the 2007–2010 sequence of earthquake, dyke intrusion and eruption in northern Tanzania. Geophys. J. Int. 195, 16–26 (2013).
- 196.
Kumagai, H. & Chouet, B. A. Acoustic properties of a crack containing magmatic or hydrothermal fluids. J. Geophys. Res. Solid Earth 105, 25493–25512 (2000).
- 197.
Nakano, M. & Kumagai, H. Response of a hydrothermal system to magmatic heat inferred from temporal variations in the complex frequencies of long-period events at Kusatsu-Shirane Volcano, Japan. J. Volcanol. Geotherm. Res. 147, 233–244 (2005).
- 198.
Rudolph, M. L. & Manga, M. Frequency dependence of mud volcano response to earthquakes. Geophys. Res. Lett. 39, 1–5 (2012).
- 199.
Toda, S., Stein, R. S., Sevilgen, V. & Lin, J. Coulomb 3.3 graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching - user guide. US Geol. Surv. Open-File Rep. 1060, 63 (2011).
- 200.
Gabrieli, A., Wilson, L. & Lane, S. Volcano–tectonic interactions as triggers of volcanic eruptions. Proc. Geol. Assoc. 126, 675–682 (2015).
- 201.
Feuillet, N., Cocco, M., Musumeci, C. & Nostro, C. Stress interaction between seismic and volcanic activity at Mt. Etna. Geophys. J. Int. 164, 697–718 (2006).
- 202.
Walter, T. R. et al. Volcanic activity influenced by tectonic earthquakes: static and dynamic stress triggering at Mt. Merapi. Geophys. Res. Lett. 34, L05304 (2007).
- 203.
Kriswati, E., Meilano, I., Iguchi, M., Abidin, H. Z. & Surono An evaluation of the possibility of tectonic triggering of the Sinabung eruption. J. Volcanol. Geotherm. Res. 382, 224–232 (2019).
- 204.
Kennedy, B. What effects do earthquakes have on volcanoes? Geology 45, 765–766 (2017).
- 205.
Jolly, A., Lokmer, I., Christenson, B. & Thun, J. Relating gas ascent to eruption triggering for the April 27, 2016, White Island (Whakaari), New Zealand eruption sequence. Earth Planets Space 70, 177 (2018).
- 206.
Aizawa, K. et al. Gas pathways and remotely triggered earthquakes beneath Mount Fuji, Japan. Geology 44, 127–130 (2016).
- 207.
Ozawa, T. & Fujita, E. Local deformations around volcanoes associated with the 2011 off the Pacific coast of Tohoku earthquake. J. Geophys. Res. Solid Earth 118, 390–405 (2013).
- 208.
Stein, R. S., Barka, A. A. & Dieterich, J. H. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys. J. Int. 128, 594–604 (1997).
- 209.
Potter, S. H., Jolly, G. E., Neall, V. E., Johnston, D. M. & Scott, B. J. Communicating the status of volcanic activity: revising New Zealand’s volcanic alert level system. J. Appl. Volcanol. 3, 1–16 (2014).
- 210.
Davis, M., Koenders, M. A. & Petford, N. Vibro-agitation of chambered magma. J. Volcanol. Geotherm. Res. 167, 24–36 (2007).
- 211.
Sumita, I. & Manga, M. Suspension rheology under oscillatory shear and its geophysical implications. Earth Planet. Sci. Lett. 269, 467–476 (2008).
- 212.
Okubo, P. G. & Wolfe, C. J. Swarms of similar long-period earthquakes in the mantle beneath Mauna Loa Volcano. J. Volcanol. Geotherm. Res. 178, 787–794 (2008).
- 213.
Gottsmann, J., Lavallée, Y., Martí, J. & Aguirre-Díaz, G. Magma–tectonic interaction and the eruption of silicic batholiths. Earth Planet. Sci. Lett. 284, 426–434 (2009).
- 214.
Christopher, T. E. et al. Crustal-scale degassing due to magma system destabilization and magma-gas decoupling at Soufrière Hills Volcano, Montserrat. Geochem. Geophys. Geosyst. 16, 2797–2811 (2015).
- 215.
Miyazawa, M. Propagation of an earthquake triggering front from the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, 1–6 (2011).
- 216.
Battaglia, J., Métaxian, J. P. & Garaebiti, E. Earthquake-volcano interaction imaged by coda wave interferometry. Geophys. Res. Lett. 39, 4–7 (2012).
- 217.
Rouwet, D. et al. Recognizing and tracking volcanic hazards related to non-magmatic unrest: a review. J. Appl. Volcanol. 3, 1–17 (2014).
- 218.
Phillipson, G., Sobradelo, R. & Gottsmann, J. Global volcanic unrest in the 21st century: an analysis of the first decade. J. Volcanol. Geotherm. Res. 264, 183–196 (2013).
- 219.
Yukutake, Y. et al. Remotely triggered seismic activity in Hakone volcano during and after the passage of surface waves from the 2011 M9.0 Tohoku-Oki earthquake. Earth Planet. Sci. Lett. 373, 205–216 (2013).
- 220.
Lupi, M., Fuchs, F. & Pacheco, J. F. Fault reactivation due to the M 7.6 Nicoya earthquake at the Turrialba-Irazú volcanic complex, Costa Rica: effects of dynamic stress triggering. Geophys. Res. Lett. 41, 4142–4148 (2014).
Comments
Something to say?
Log in or Sign up for free