Welcome to the IKCEST
Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America
  1. 1.

    Haynes, G. in Encyclopedia of the Anthropocene (eds. DellaSala, D. & Goldstein, M.) 219–226 (Amsterdam: Elsevier, 2018).

  2. 2.

    Meltzer, D. J. Pleistocene overkill and North American mammalian extinctions. Annu. Rev. Anthropol. 44, 33–53 (2015).

    Article  Google Scholar 

  3. 3.

    Grayson, D. K. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 5–39 (The University of Arizona Press, Tucson, Arizona, 1984).

  4. 4.

    Turner, G. Memoir on the extraneous fossils, denominated mammoth bones; principally designed to shew that they are the remains of more than one species of non-descript animal. Trans. Am. Philos. Soc. 4, 510–518 (1799).

    Article  Google Scholar 

  5. 5.

    Martin, P. S. in Pleistocene Extinctions: The Search for a Cause (eds. Martin, P. S. & Wright, H. E.) 75–120 (Yale University Press, New Haven, CT, 1967).

  6. 6.

    Martin, P. S. The discovery of America: the first Americans may have swept the Western Hemisphere and decimated its fauna within 1000 years. Science 179, 969–974 (1973).

    ADS  CAS  PubMed  Article  Google Scholar 

  7. 7.

    Martin, P. S. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 354–403 (The University of Arizona Press, Tucson, Arizona, 1984).

  8. 8.

    Long, A. & Martin, P. S. Death of american ground sloths. Science 186, 638–640 (1974).

    ADS  CAS  PubMed  Article  Google Scholar 

  9. 9.

    Mosimann, J. E. & Martin, P. S. Simulating Overkill by Paleoindians: Did man hunt the giant mammals of the New World to extinction? Mathematical models show that the hypothesis is feasible. Am. Sci. 63, 304–313 (1975).

    ADS  Google Scholar 

  10. 10.

    Diamond, J. M. Quaternary megafaunal extinctions: variations on a theme by paganini. J. Archaeol. Sci. 16, 167–175 (1989).

    Article  Google Scholar 

  11. 11.

    Grayson, D. K. An analysis of the chronology of late Pleistocene mammalian extinctions in North America. Quat. Res. 28, 281–289 (1987).

    Article  Google Scholar 

  12. 12.

    Shapiro, B. et al. Rise and fall of the Beringian steppe bison. Science 306, 1561–1565 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  13. 13.

    Hofreiter, M. & Barnes, I. Diversity lost: are all Holarctic large mammal species just relict populations? BMC Biol. 8, 46 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Orlando, L. & Cooper, A. Using ancient DNA to understand evolutionary and ecological processes. Annu. Rev. Ecol. Evol. Syst. 45, 573–598 (2014).

    Article  Google Scholar 

  15. 15.

    Faith, J. T. in Encyclopedia of Global Archaeology (ed. Smith, C.) 5426–5435 (Springer, 2014).

  16. 16.

    Jackson, S. T. & Weng, C. Late Quaternary extinction of a tree species in eastern North America. Proc. Natl Acad. Sci. USA 96, 13847–13852 (1999).

    ADS  CAS  PubMed  Article  Google Scholar 

  17. 17.

    Guthrie, R. D. Rapid body size decline in Alaskan Pleistocene horses before extinction. Nature 426, 169–171 (2003).

    ADS  PubMed  Article  CAS  Google Scholar 

  18. 18.

    Hill, M. E., Hill, M. G. & Widga, C. C. Late Quaternary Bison diminution on the Great Plains of North America: evaluating the role of human hunting versus climate change. Quat. Sci. Rev. 27, 1752–1771 (2008).

    ADS  Article  Google Scholar 

  19. 19.

    Lyman, R. L. Taphonomy, pathology, and paleoecology of the terminal Pleistocene Marmes Rockshelter (45FR50) “big elk” (Cervus elaphus), southeastern Washington State, USA. Can. J. Earth Sci. 47, 1367–1382 (2010).

    Article  Google Scholar 

  20. 20.

    Lyman, R. L. The Holocene history of bighorn sheep (Ovis canadensis) in eastern Washington state, northwestern USA. Holocene 19, 143–150 (2009).

    ADS  Article  Google Scholar 

  21. 21.

    Grayson, D. K. Deciphering North American pleistocene extinctions. J. Anthropol. Res. 63, 185–213 (2007).

    Article  Google Scholar 

  22. 22.

    Signor, P. W. & Lipps, J. H. in Geological Implications of Impacts of Large Asteroids and Comets on the Earth (eds. Silver, L. T. & Schultz, P. H.) Vol. 190, p. 291–296 (Geological Society of America Boulder, CO, 1982).

  23. 23.

    Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA 106, 22352–22357 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  24. 24.

    Broughton, J. M. & Weitzel, E. M. Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat. Commun. 9, 5441 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Boulanger, M. T. & Lyman, R. L. Northeastern North American Pleistocene megafauna chronologically overlapped minimally with Paleoindians. Quat. Sci. Rev. 85, 35–46 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Rick, J. W. Dates as data: an examination of the peruvian preceramic radiocarbon record. Am. Antiq. 52, 55–73 (1987).

    Article  Google Scholar 

  27. 27.

    Mann, D. H. et al. Life and extinction of megafauna in the ice-age Arctic. Proc. Natl Acad. Sci. USA 112, 14301–14306 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  28. 28.

    MacDonald, G. M. et al. Pattern of extinction of the woolly mammoth in Beringia. Nat. Commun. 3, 839 (2012).

    Article  CAS  Google Scholar 

  29. 29.

    Pino, M. et al. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Sci. Rep. 9, 4413 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Williams, A. N. The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. Archaeol. Sci. 39, 578–589 (2012).

    Article  Google Scholar 

  31. 31.

    Contreras, D. A. & Meadows, J. Summed radiocarbon calibrations as a population proxy: a critical evaluation using a realistic simulation approach. J. Archaeol. Sci. 52, 591–608 (2014).

    Article  Google Scholar 

  32. 32.

    Carleton, W. C. & Groucutt, H. S. Sum things are not what they seem: Problems with point-wise interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. Holocene 1–14 https://doi.org/10.1177/0959683620981700 (2020).

  33. 33.

    Ramsey, C. B. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Carleton, W. C. Evaluating Bayesian radiocarbon-dated event-count modelling for the study of long-term human and environmental processes. J. Quat. Sci. 36, 110–123 (2020).

  35. 35.

    Brown, W. A. The past and future of growth rate estimation in demographic temporal frequency analysis: biodemographic interpretability and the ascendance of dynamic growth models. J. Archaeol. Sci. 80, 96–108 (2017).

    Article  Google Scholar 

  36. 36.

    Wicks, K. & Mithen, S. The impact of the abrupt 8.2 ka cold event on the Mesolithic population of western Scotland: a Bayesian chronological analysis using ‘activity events’ as a population proxy. J. Archaeol. Sci. 45, 240–269 (2014).

    Article  Google Scholar 

  37. 37.

    Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Price, G. J., Louys, J., Faith, J. T., Lorenzen, E. & Westaway, M. C. Big data little help in megafauna mysteries. Nature 558, 23–25 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Surovell, T. A., Finley, J. B., Smith, G. M., Jeffrey Brantingham, P. & Kelly, R. Correcting temporal frequency distributions for taphonomic bias. J. Archaeol. Sci. 36, 1715–1724 (2009).

    Article  Google Scholar 

  40. 40.

    Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  41. 41.

    Metcalf, J. L. et al. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Sci. Adv. 2, e1501682 (2016).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Boers, N., Goswami, B. & Ghil, M. A complete representation of uncertainties in layer-counted paleoclimatic archives. Climate 13, 1169–1180 (2017).

    Google Scholar 

  43. 43.

    Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  44. 44.

    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  45. 45.

    Meltzer, D. J. & Mead, J. I. The timing of late pleistocene mammalian extinctions in North America. Quat. Res. 19, 130–135 (1983).

    Article  Google Scholar 

  46. 46.

    Owen-Smith, N. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13, 351–362 (1987).

    Article  Google Scholar 

  47. 47.

    Zimov, S. A. et al. Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. Am. Nat. 146, 765–794 (1995).

    Article  Google Scholar 

  48. 48.

    Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  49. 49.

    Forbes, E. S. et al. Synthesizing the effects of large, wild herbivore exclusion on ecosystem function. Funct. Ecol. 33, 1597–1610 (2019).

    Article  Google Scholar 

  50. 50.

    Ripple, W. J. & Van Valkenburgh, B. Linking top-down forces to the pleistocene megafaunal extinctions. BioScience 60, 516–526 (2010).

    Article  Google Scholar 

  51. 51.

    VanValkenburgh, B. & Hertel, F. Tough times at la brea: tooth breakage in large carnivores of the late pleistocene. Science 261, 456–459 (1993).

    ADS  CAS  PubMed  Article  Google Scholar 

  52. 52.

    Koch, P. L. & Barnosky, A. D. Late quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250 (2006).

    Article  Google Scholar 

  53. 53.

    Haynes, G. Extinctions in North America’s Late Glacial landscapes. Quat. Int. 285, 89–98 (2013).

    Article  Google Scholar 

  54. 54.

    Berti, E. & Svenning, J. Megafauna extinctions have reduced biotic connectivity worldwide. Glob. Ecol. Biogeogr. 373, 20170008 (2020).

    Google Scholar 

  55. 55.

    Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl Acad. Sci. USA 106, 20641–20645 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  56. 56.

    Robinson, G. S., Burney, L. P. & Burney, D. A. Landscape paleoecology and megafaunal extinction in southeastern New York State. Ecol. Monogr. 75, 295–315 (2005).

    Article  Google Scholar 

  57. 57.

    Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  58. 58.

    Meltzer, D. J. & Holliday, V. T. Would North American paleoindians have noticed younger dryas age climate changes? J. World Prehistory 23, 1–41 (2010).

    Article  Google Scholar 

  59. 59.

    Shuman, B., Webb, T., Bartlein, P. & Williams, J. W. The anatomy of a climatic oscillation: vegetation change in eastern North America during the Younger Dryas chronozone. Quat. Sci. Rev. 21, 1777–1791 (2002).

    ADS  Article  Google Scholar 

  60. 60.

    Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  61. 61.

    Williams, J. W., Shuman, B. N. & Webb, T. III Dissimilarity analyses of Late-Quaternary vegetation and climate in eastern North America. Ecology 82, 3346–3362 (2001).

    Google Scholar 

  62. 62.

    Yu, Z. Rapid response of forested vegetation to multiple climatic oscillations during the last deglaciation in the northeastern United States. Quat. Res. 67, 297–303 (2007).

    Article  Google Scholar 

  63. 63.

    Wolverton, S., Lee Lyman, R., Kennedy, J. H. & La Point, T. W. The terminal pleistocene extinctions in North America, hypermorphic evolution, and the dynamic equilibrium model. J. Ethnobiol. 29, 28–63 (2009).

    Article  Google Scholar 

  64. 64.

    Guthrie, R. D. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 259–298 (The University of Arizona Press, Tucson, Arizona, 1984).

  65. 65.

    Faith, J. T. Late Pleistocene climate change, nutrient cycling, and the megafaunal extinctions in North America. Quat. Sci. Rev. 30, 1675–1680 (2011).

    ADS  Article  Google Scholar 

  66. 66.

    Haynes, C. V. Younger Dryas “black mats” and the Rancholabrean termination in North America. Proc. Natl Acad. Sci. USA 105, 6520–6525 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  67. 67.

    Seersholm, F. V. et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11, 2770 (2020).

  68. 68.

    Firestone, R. B. et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc. Natl Acad. Sci. USA 104, 16016–16021 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  69. 69.

    Holliday, V. T. & Meltzer, D. J. The 12.9-ka ET impact hypothesis and North American Paleoindians. Curr. Anthropol. 51, 575–607 (2010).

    Article  Google Scholar 

  70. 70.

    Graham, R. W. & Lundelius, E. L. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 223–249 (The University of Arizona Press, Tucson, Arizona, 1984).

  71. 71.

    Yu, Z. & Wright, H. E. Response of interior North America to abrupt climate oscillations in the North Atlantic region during the last deglaciation. Earth Sci. Rev. 52, 333–369 (2001).

    ADS  CAS  Article  Google Scholar 

  72. 72.

    Gill, J. L., Williams, J. W., Jackson, S. T., Donnelly, J. P. & Schellinger, G. C. Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quat. Sci. Rev. 34, 66–80 (2012).

    ADS  Article  Google Scholar 

  73. 73.

    Yansa, C. H. & Adams, K. M. Mastodons and mammoths in the great lakes region, USA and Canada: new insights into their diets as they neared extinction. Geogr. Compass 6, 175–188 (2012).

    Article  Google Scholar 

  74. 74.

    Asmerom, Y., Polyak, V. J. & Burns, S. J. Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nat. Geosci. 3, 114–117 (2010).

    ADS  CAS  Article  Google Scholar 

  75. 75.

    Wagner, J. D. M. et al. Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nat. Geosci. 3, 110–113 (2010).

    ADS  CAS  Article  Google Scholar 

  76. 76.

    Kirby, M. E., Feakins, S. J., Bonuso, N., Fantozzi, J. M. & Hiner, C. A. Latest pleistocene to holocene hydroclimates from Lake Elsinore, California. Quat. Sci. Rev. 76, 1–15 (2013).

    ADS  Article  Google Scholar 

  77. 77.

    Polyak, V. J., Asmerom, Y., Burns, S. J. & Lachniet, M. S. Climatic backdrop to the terminal Pleistocene extinction of North American mammals. Geology 40, 1023–1026 (2012).

    ADS  Article  Google Scholar 

  78. 78.

    MacDonald, G. M. et al. Evidence of temperature depression and hydrological variations in the eastern Sierra Nevada during the Younger Dryas Stade. Quat. Res. 70, 131–140 (2008).

    Article  Google Scholar 

  79. 79.

    Polyak, V. J., Rasmussen, J. B. T. & Asmerom, Y. Prolonged wet period in the southwestern United States through the Younger Dryas. Geology 32, 5 (2004).

    ADS  CAS  Article  Google Scholar 

  80. 80.

    Holliday, V. T. Folsom Drought and episodic drying on the southern high plains from 10,900–10,200 14C yr B.P. Quat. Res. 53, 1–12 (2000).

    Article  Google Scholar 

  81. 81.

    Ballenger, J. A. M. et al. Evidence for Younger Dryas global climate oscillation and human response in the American Southwest. Quat. Int. 242, 502–519 (2011).

    Article  Google Scholar 

  82. 82.

    Heusser, L. E., Kirby, M. E. & Nichols, J. E. Pollen-based evidence of extreme drought during the last Glacial (32.6–9.0 ka) in coastal southern California. Quat. Sci. Rev. 126, 242–253 (2015).

    ADS  Article  Google Scholar 

  83. 83.

    Holmgren, C. A., Betancourt, J. L. & Rylander, K. A. A 36,000-yr vegetation history from the Peloncillo Mountains, southeastern Arizona, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240, 405–422 (2006).

    Article  Google Scholar 

  84. 84.

    Van Devender, T. R. & Spaulding, W. G. Development of vegetation and climate in the Southwestern United States. Science 204, 701–710 (1979).

    ADS  PubMed  Article  Google Scholar 

  85. 85.

    Marcus, L. F. & Berger, R. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 159–183 (The University of Arizona Press, Tucson, Arizona, 1984).

  86. 86.

    Friscia, A. R., Van Valkenburgh, B., Spencer, L. & Harris, J. Chronology and spatial distribution of large mammal bones in Pit 91, Rancho La Brea. Palaios 23, 25–42 (2008).

    ADS  Article  Google Scholar 

  87. 87.

    Shackleton, N. J., Hall, M. A. & Vincent, E. Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15, 565–569 (2000).

    ADS  Article  Google Scholar 

  88. 88.

    Affolter, S. et al. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Sci. Adv. 5, eaav3809 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. 89.

    RStudio Team. RStudio: Integrated Development for R. (RStudio, PBC, Boston, MA, 2020).

  90. 90.

    NIMBLE Development Team. NIMBLE: MCMC, Particle Filtering, and Programmable Hierarchical Modeling (2020).

  91. 91.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (2016).

  92. 92.

    Kassambara, A. ggpubr: “ggplot2” Based Publication Ready Plots (2020).

Original Text (This is the original text for your reference.)

  1. 1.

    Haynes, G. in Encyclopedia of the Anthropocene (eds. DellaSala, D. & Goldstein, M.) 219–226 (Amsterdam: Elsevier, 2018).

  2. 2.

    Meltzer, D. J. Pleistocene overkill and North American mammalian extinctions. Annu. Rev. Anthropol. 44, 33–53 (2015).

    Article  Google Scholar 

  3. 3.

    Grayson, D. K. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 5–39 (The University of Arizona Press, Tucson, Arizona, 1984).

  4. 4.

    Turner, G. Memoir on the extraneous fossils, denominated mammoth bones; principally designed to shew that they are the remains of more than one species of non-descript animal. Trans. Am. Philos. Soc. 4, 510–518 (1799).

    Article  Google Scholar 

  5. 5.

    Martin, P. S. in Pleistocene Extinctions: The Search for a Cause (eds. Martin, P. S. & Wright, H. E.) 75–120 (Yale University Press, New Haven, CT, 1967).

  6. 6.

    Martin, P. S. The discovery of America: the first Americans may have swept the Western Hemisphere and decimated its fauna within 1000 years. Science 179, 969–974 (1973).

    ADS  CAS  PubMed  Article  Google Scholar 

  7. 7.

    Martin, P. S. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 354–403 (The University of Arizona Press, Tucson, Arizona, 1984).

  8. 8.

    Long, A. & Martin, P. S. Death of american ground sloths. Science 186, 638–640 (1974).

    ADS  CAS  PubMed  Article  Google Scholar 

  9. 9.

    Mosimann, J. E. & Martin, P. S. Simulating Overkill by Paleoindians: Did man hunt the giant mammals of the New World to extinction? Mathematical models show that the hypothesis is feasible. Am. Sci. 63, 304–313 (1975).

    ADS  Google Scholar 

  10. 10.

    Diamond, J. M. Quaternary megafaunal extinctions: variations on a theme by paganini. J. Archaeol. Sci. 16, 167–175 (1989).

    Article  Google Scholar 

  11. 11.

    Grayson, D. K. An analysis of the chronology of late Pleistocene mammalian extinctions in North America. Quat. Res. 28, 281–289 (1987).

    Article  Google Scholar 

  12. 12.

    Shapiro, B. et al. Rise and fall of the Beringian steppe bison. Science 306, 1561–1565 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  13. 13.

    Hofreiter, M. & Barnes, I. Diversity lost: are all Holarctic large mammal species just relict populations? BMC Biol. 8, 46 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Orlando, L. & Cooper, A. Using ancient DNA to understand evolutionary and ecological processes. Annu. Rev. Ecol. Evol. Syst. 45, 573–598 (2014).

    Article  Google Scholar 

  15. 15.

    Faith, J. T. in Encyclopedia of Global Archaeology (ed. Smith, C.) 5426–5435 (Springer, 2014).

  16. 16.

    Jackson, S. T. & Weng, C. Late Quaternary extinction of a tree species in eastern North America. Proc. Natl Acad. Sci. USA 96, 13847–13852 (1999).

    ADS  CAS  PubMed  Article  Google Scholar 

  17. 17.

    Guthrie, R. D. Rapid body size decline in Alaskan Pleistocene horses before extinction. Nature 426, 169–171 (2003).

    ADS  PubMed  Article  CAS  Google Scholar 

  18. 18.

    Hill, M. E., Hill, M. G. & Widga, C. C. Late Quaternary Bison diminution on the Great Plains of North America: evaluating the role of human hunting versus climate change. Quat. Sci. Rev. 27, 1752–1771 (2008).

    ADS  Article  Google Scholar 

  19. 19.

    Lyman, R. L. Taphonomy, pathology, and paleoecology of the terminal Pleistocene Marmes Rockshelter (45FR50) “big elk” (Cervus elaphus), southeastern Washington State, USA. Can. J. Earth Sci. 47, 1367–1382 (2010).

    Article  Google Scholar 

  20. 20.

    Lyman, R. L. The Holocene history of bighorn sheep (Ovis canadensis) in eastern Washington state, northwestern USA. Holocene 19, 143–150 (2009).

    ADS  Article  Google Scholar 

  21. 21.

    Grayson, D. K. Deciphering North American pleistocene extinctions. J. Anthropol. Res. 63, 185–213 (2007).

    Article  Google Scholar 

  22. 22.

    Signor, P. W. & Lipps, J. H. in Geological Implications of Impacts of Large Asteroids and Comets on the Earth (eds. Silver, L. T. & Schultz, P. H.) Vol. 190, p. 291–296 (Geological Society of America Boulder, CO, 1982).

  23. 23.

    Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA 106, 22352–22357 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  24. 24.

    Broughton, J. M. & Weitzel, E. M. Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat. Commun. 9, 5441 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Boulanger, M. T. & Lyman, R. L. Northeastern North American Pleistocene megafauna chronologically overlapped minimally with Paleoindians. Quat. Sci. Rev. 85, 35–46 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Rick, J. W. Dates as data: an examination of the peruvian preceramic radiocarbon record. Am. Antiq. 52, 55–73 (1987).

    Article  Google Scholar 

  27. 27.

    Mann, D. H. et al. Life and extinction of megafauna in the ice-age Arctic. Proc. Natl Acad. Sci. USA 112, 14301–14306 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  28. 28.

    MacDonald, G. M. et al. Pattern of extinction of the woolly mammoth in Beringia. Nat. Commun. 3, 839 (2012).

    Article  CAS  Google Scholar 

  29. 29.

    Pino, M. et al. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Sci. Rep. 9, 4413 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Williams, A. N. The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. Archaeol. Sci. 39, 578–589 (2012).

    Article  Google Scholar 

  31. 31.

    Contreras, D. A. & Meadows, J. Summed radiocarbon calibrations as a population proxy: a critical evaluation using a realistic simulation approach. J. Archaeol. Sci. 52, 591–608 (2014).

    Article  Google Scholar 

  32. 32.

    Carleton, W. C. & Groucutt, H. S. Sum things are not what they seem: Problems with point-wise interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. Holocene 1–14 https://doi.org/10.1177/0959683620981700 (2020).

  33. 33.

    Ramsey, C. B. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Carleton, W. C. Evaluating Bayesian radiocarbon-dated event-count modelling for the study of long-term human and environmental processes. J. Quat. Sci. 36, 110–123 (2020).

  35. 35.

    Brown, W. A. The past and future of growth rate estimation in demographic temporal frequency analysis: biodemographic interpretability and the ascendance of dynamic growth models. J. Archaeol. Sci. 80, 96–108 (2017).

    Article  Google Scholar 

  36. 36.

    Wicks, K. & Mithen, S. The impact of the abrupt 8.2 ka cold event on the Mesolithic population of western Scotland: a Bayesian chronological analysis using ‘activity events’ as a population proxy. J. Archaeol. Sci. 45, 240–269 (2014).

    Article  Google Scholar 

  37. 37.

    Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Price, G. J., Louys, J., Faith, J. T., Lorenzen, E. & Westaway, M. C. Big data little help in megafauna mysteries. Nature 558, 23–25 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Surovell, T. A., Finley, J. B., Smith, G. M., Jeffrey Brantingham, P. & Kelly, R. Correcting temporal frequency distributions for taphonomic bias. J. Archaeol. Sci. 36, 1715–1724 (2009).

    Article  Google Scholar 

  40. 40.

    Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  41. 41.

    Metcalf, J. L. et al. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Sci. Adv. 2, e1501682 (2016).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Boers, N., Goswami, B. & Ghil, M. A complete representation of uncertainties in layer-counted paleoclimatic archives. Climate 13, 1169–1180 (2017).

    Google Scholar 

  43. 43.

    Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  44. 44.

    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  45. 45.

    Meltzer, D. J. & Mead, J. I. The timing of late pleistocene mammalian extinctions in North America. Quat. Res. 19, 130–135 (1983).

    Article  Google Scholar 

  46. 46.

    Owen-Smith, N. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13, 351–362 (1987).

    Article  Google Scholar 

  47. 47.

    Zimov, S. A. et al. Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. Am. Nat. 146, 765–794 (1995).

    Article  Google Scholar 

  48. 48.

    Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  49. 49.

    Forbes, E. S. et al. Synthesizing the effects of large, wild herbivore exclusion on ecosystem function. Funct. Ecol. 33, 1597–1610 (2019).

    Article  Google Scholar 

  50. 50.

    Ripple, W. J. & Van Valkenburgh, B. Linking top-down forces to the pleistocene megafaunal extinctions. BioScience 60, 516–526 (2010).

    Article  Google Scholar 

  51. 51.

    VanValkenburgh, B. & Hertel, F. Tough times at la brea: tooth breakage in large carnivores of the late pleistocene. Science 261, 456–459 (1993).

    ADS  CAS  PubMed  Article  Google Scholar 

  52. 52.

    Koch, P. L. & Barnosky, A. D. Late quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250 (2006).

    Article  Google Scholar 

  53. 53.

    Haynes, G. Extinctions in North America’s Late Glacial landscapes. Quat. Int. 285, 89–98 (2013).

    Article  Google Scholar 

  54. 54.

    Berti, E. & Svenning, J. Megafauna extinctions have reduced biotic connectivity worldwide. Glob. Ecol. Biogeogr. 373, 20170008 (2020).

    Google Scholar 

  55. 55.

    Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl Acad. Sci. USA 106, 20641–20645 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  56. 56.

    Robinson, G. S., Burney, L. P. & Burney, D. A. Landscape paleoecology and megafaunal extinction in southeastern New York State. Ecol. Monogr. 75, 295–315 (2005).

    Article  Google Scholar 

  57. 57.

    Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  58. 58.

    Meltzer, D. J. & Holliday, V. T. Would North American paleoindians have noticed younger dryas age climate changes? J. World Prehistory 23, 1–41 (2010).

    Article  Google Scholar 

  59. 59.

    Shuman, B., Webb, T., Bartlein, P. & Williams, J. W. The anatomy of a climatic oscillation: vegetation change in eastern North America during the Younger Dryas chronozone. Quat. Sci. Rev. 21, 1777–1791 (2002).

    ADS  Article  Google Scholar 

  60. 60.

    Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  61. 61.

    Williams, J. W., Shuman, B. N. & Webb, T. III Dissimilarity analyses of Late-Quaternary vegetation and climate in eastern North America. Ecology 82, 3346–3362 (2001).

    Google Scholar 

  62. 62.

    Yu, Z. Rapid response of forested vegetation to multiple climatic oscillations during the last deglaciation in the northeastern United States. Quat. Res. 67, 297–303 (2007).

    Article  Google Scholar 

  63. 63.

    Wolverton, S., Lee Lyman, R., Kennedy, J. H. & La Point, T. W. The terminal pleistocene extinctions in North America, hypermorphic evolution, and the dynamic equilibrium model. J. Ethnobiol. 29, 28–63 (2009).

    Article  Google Scholar 

  64. 64.

    Guthrie, R. D. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 259–298 (The University of Arizona Press, Tucson, Arizona, 1984).

  65. 65.

    Faith, J. T. Late Pleistocene climate change, nutrient cycling, and the megafaunal extinctions in North America. Quat. Sci. Rev. 30, 1675–1680 (2011).

    ADS  Article  Google Scholar 

  66. 66.

    Haynes, C. V. Younger Dryas “black mats” and the Rancholabrean termination in North America. Proc. Natl Acad. Sci. USA 105, 6520–6525 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  67. 67.

    Seersholm, F. V. et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11, 2770 (2020).

  68. 68.

    Firestone, R. B. et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc. Natl Acad. Sci. USA 104, 16016–16021 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  69. 69.

    Holliday, V. T. & Meltzer, D. J. The 12.9-ka ET impact hypothesis and North American Paleoindians. Curr. Anthropol. 51, 575–607 (2010).

    Article  Google Scholar 

  70. 70.

    Graham, R. W. & Lundelius, E. L. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 223–249 (The University of Arizona Press, Tucson, Arizona, 1984).

  71. 71.

    Yu, Z. & Wright, H. E. Response of interior North America to abrupt climate oscillations in the North Atlantic region during the last deglaciation. Earth Sci. Rev. 52, 333–369 (2001).

    ADS  CAS  Article  Google Scholar 

  72. 72.

    Gill, J. L., Williams, J. W., Jackson, S. T., Donnelly, J. P. & Schellinger, G. C. Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quat. Sci. Rev. 34, 66–80 (2012).

    ADS  Article  Google Scholar 

  73. 73.

    Yansa, C. H. & Adams, K. M. Mastodons and mammoths in the great lakes region, USA and Canada: new insights into their diets as they neared extinction. Geogr. Compass 6, 175–188 (2012).

    Article  Google Scholar 

  74. 74.

    Asmerom, Y., Polyak, V. J. & Burns, S. J. Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nat. Geosci. 3, 114–117 (2010).

    ADS  CAS  Article  Google Scholar 

  75. 75.

    Wagner, J. D. M. et al. Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nat. Geosci. 3, 110–113 (2010).

    ADS  CAS  Article  Google Scholar 

  76. 76.

    Kirby, M. E., Feakins, S. J., Bonuso, N., Fantozzi, J. M. & Hiner, C. A. Latest pleistocene to holocene hydroclimates from Lake Elsinore, California. Quat. Sci. Rev. 76, 1–15 (2013).

    ADS  Article  Google Scholar 

  77. 77.

    Polyak, V. J., Asmerom, Y., Burns, S. J. & Lachniet, M. S. Climatic backdrop to the terminal Pleistocene extinction of North American mammals. Geology 40, 1023–1026 (2012).

    ADS  Article  Google Scholar 

  78. 78.

    MacDonald, G. M. et al. Evidence of temperature depression and hydrological variations in the eastern Sierra Nevada during the Younger Dryas Stade. Quat. Res. 70, 131–140 (2008).

    Article  Google Scholar 

  79. 79.

    Polyak, V. J., Rasmussen, J. B. T. & Asmerom, Y. Prolonged wet period in the southwestern United States through the Younger Dryas. Geology 32, 5 (2004).

    ADS  CAS  Article  Google Scholar 

  80. 80.

    Holliday, V. T. Folsom Drought and episodic drying on the southern high plains from 10,900–10,200 14C yr B.P. Quat. Res. 53, 1–12 (2000).

    Article  Google Scholar 

  81. 81.

    Ballenger, J. A. M. et al. Evidence for Younger Dryas global climate oscillation and human response in the American Southwest. Quat. Int. 242, 502–519 (2011).

    Article  Google Scholar 

  82. 82.

    Heusser, L. E., Kirby, M. E. & Nichols, J. E. Pollen-based evidence of extreme drought during the last Glacial (32.6–9.0 ka) in coastal southern California. Quat. Sci. Rev. 126, 242–253 (2015).

    ADS  Article  Google Scholar 

  83. 83.

    Holmgren, C. A., Betancourt, J. L. & Rylander, K. A. A 36,000-yr vegetation history from the Peloncillo Mountains, southeastern Arizona, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240, 405–422 (2006).

    Article  Google Scholar 

  84. 84.

    Van Devender, T. R. & Spaulding, W. G. Development of vegetation and climate in the Southwestern United States. Science 204, 701–710 (1979).

    ADS  PubMed  Article  Google Scholar 

  85. 85.

    Marcus, L. F. & Berger, R. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 159–183 (The University of Arizona Press, Tucson, Arizona, 1984).

  86. 86.

    Friscia, A. R., Van Valkenburgh, B., Spencer, L. & Harris, J. Chronology and spatial distribution of large mammal bones in Pit 91, Rancho La Brea. Palaios 23, 25–42 (2008).

    ADS  Article  Google Scholar 

  87. 87.

    Shackleton, N. J., Hall, M. A. & Vincent, E. Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15, 565–569 (2000).

    ADS  Article  Google Scholar 

  88. 88.

    Affolter, S. et al. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Sci. Adv. 5, eaav3809 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. 89.

    RStudio Team. RStudio: Integrated Development for R. (RStudio, PBC, Boston, MA, 2020).

  90. 90.

    NIMBLE Development Team. NIMBLE: MCMC, Particle Filtering, and Programmable Hierarchical Modeling (2020).

  91. 91.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (2016).

  92. 92.

    Kassambara, A. ggpubr: “ggplot2” Based Publication Ready Plots (2020).

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel