Welcome to the IKCEST
A new global ice sheet reconstruction for the past 80 000 years
  1. 1.

    Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res.: Solid Earth 120, 450–487 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Lambeck, K., Purcell, A. & Zhao, S. The North American Late Wisconsin ice sheet and mantle viscosity from glacial rebound analyses. Quat. Sci. Rev. 158, 172–210 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Tarasov, L., Dyke, A. S., Neal, R. M. & Peltier, W. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett. 315–316, 30–40 (2012).

    ADS  Article  CAS  Google Scholar 

  4. 4.

    Stokes, C. R., Tarasov, L. & Dyke, A. S. Dynamics of the North American Ice Sheet Complex during its inception and build-up to the last glacial maximum. Quat. Sci. Rev. 50, 86–104 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Dalton, A. S., Finkelstein, S. A., Barnett, P. J. & Forman, S. L. Constraining the Late Pleistocene history of the Laurentide Ice Sheet by dating the Missinaibi Formation, Hudson Bay Lowlands, Canada. Quat. Sci. Rev. 146, 288–299 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Dalton, A. S. et al. Was the Laurentide Ice Sheet significantly reduced during Marine Isotope Stage 3? Geology 47, 111–114 (2019).

    ADS  Article  Google Scholar 

  7. 7.

    McMartin, I., Campbell, J. E. & Dredge, L. A. Middle Wisconsinan marine shells near Repulse Bay, Nunavut, Canada: implications for Marine Isotope Stage 3 ice-free conditions and Laurentide Ice Sheet dynamics in north-west Hudson Bay. J. Quat. Sci. 34, 64–75 (2019).

    Article  Google Scholar 

  8. 8.

    Dalton, A. S., Väliranta, M., Barnett, P. J. & Finkelstein, S. A. Pollen and macrofossil-inferred palaeoclimate at the Ridge Site, Hudson Bay Lowlands, Canada: evidence for a dry climate and significant recession of the Laurentide Ice Sheet during Marine Isotope Stage 3. Boreas 46, 388–401 (2017).

    Article  Google Scholar 

  9. 9.

    Pico, T., Creveling, J. & Mitrovica, J. Sea-level records from the US mid-Atlantic constrain Laurentide Ice Sheet extent during Marine Isotope Stage 3. Nat. Commun. 8, 15612 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Miller, G. H. & Andrews, J. T. Hudson Bay was not deglaciated during MIS-3. Quat. Sci. Rev. 225, 105944 (2019).

    Article  Google Scholar 

  11. 11.

    Pico, T., Mitrovica, J. X., Ferrier, K. L. & Braun, J. Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta. Quat. Sci. Rev. 152, 72–79 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Pico, T., Birch, L., Weisenberg, J. & Mitrovica, J. Refining the Laurentide Ice Sheet at Marine Isotope Stage 3: a data-based approach combining glacial isostatic simulations with a dynamic ice model. Quat. Sci. Rev. 195, 171–179 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Gowan, E. J., Tregoning, P., Purcell, A., Montillet, J.-P. & McClusky, S. A model of the western Laurentide Ice Sheet, using observations of glacial isostatic adjustment. Quat. Sci. Rev. 139, 1–16 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Gowan, E. J. et al. ICESHEET 1.0: a program to produce paleo-ice sheet reconstructions with minimal assumptions. Geosci. Model Dev. 9, 1673–1682 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Simms, A. R., Lisiecki, L., Gebbie, G., Whitehouse, P. L. & Clark, J. F. Balancing the Last Glacial Maximum (LGM) sea-level budget. Quat. Sci. Rev. 205, 143–153 (2019).

    ADS  Article  Google Scholar 

  16. 16.

    Potter, E.-K. et al. Suborbital-period sea-level oscillations during marine isotope substages 5a and 5c. Earth Planet. Sci. Lett. 225, 191–204 (2004).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–686 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  18. 18.

    Batchelor, C. L. et al. The configuration of Northern Hemisphere ice sheets through the quaternary. Nat. Commun. 10, 1–10 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Dredge, L. & Thorleifson, L. The Middle Wisconsinan history of the Laurentide ice sheet. Géographie Phys. et. Quat. 41, 215–235 (1987).

    Article  Google Scholar 

  20. 20.

    Dyke, A. S. et al. The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quat. Sci. Rev. 21, 9–31 (2002).

    ADS  Article  Google Scholar 

  21. 21.

    Andrews, J. T. & Voelker, A. H. “Heinrich Events” (& sediments): a history of terminology and recommendations for future usage. Quat. Sci. Rev. 187, 31–40 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Gauthier, M. S. et al. The subglacial mosaic of the Laurentide Ice Sheet; a study of the interior region of southwestern Hudson Bay. Quat. Sci. Rev. 214, 1–27 (2019).

    ADS  Article  Google Scholar 

  23. 23.

    Eyles, N., Eyles, C. H., Woodworth-Lynas, C. & Randall, T. A. The sedimentary record of drifting ice (early Wisconsin Sunnybrook deposit) in an ancestral ice-dammed Lake Ontario, Canada. Quat. Res. 63, 171–181 (2005).

    Article  Google Scholar 

  24. 24.

    Karrow, P. F., Dreimanis, A. & Barnett, P. J. A proposed diachronic revision of late Quaternary time-stratigraphic classification in the eastern and northern Great Lakes area. Quat. Res. 54, 1–12 (2000).

    Article  Google Scholar 

  25. 25.

    Mulligan, R. P. & Bajc, A. F. The pre-Late Wisconsin stratigraphy of southern Simcoe County, Ontario: implications for ice sheet buildup, decay, and Great Lakes drainage evolution. Can. J. Earth Sci. 55, 709–729 (2018).

    ADS  Article  Google Scholar 

  26. 26.

    Karig, D. E. & Miller, N. G. Middle Wisconsin glacial advance into the Appalachian Plateau, Sixmile Creek, Tompkins Co., NY. Quat. Res. 80, 522–533 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Munroe, J. S., Perzan, Z. M. & Amidon, W. H. Cave sediments constrain the latest Pleistocene advance of the Laurentide Ice Sheet in the Champlain Valley, Vermont, USA. J. Quat. Sci. 31, 893–904 (2016).

    Article  Google Scholar 

  28. 28.

    Young, R. A. & Burr, G. S. Middle Wisconsin glaciation in the Genesee Valley, NY: a stratigraphic record contemporaneous with Heinrich Event, H4. Geomorphology 75, 226–247 (2006).

    ADS  Article  Google Scholar 

  29. 29.

    Svendsen, J. I. et al. Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev. 23, 1229–1271 (2004).

    ADS  Article  Google Scholar 

  30. 30.

    Margold, M., Stokes, C. R. & Clark, C. D. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet. Quat. Sci. Rev. 189, 1–30 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  32. 32.

    Vacchi, M. et al. Postglacial relative sea-level histories along the eastern Canadian coastline. Quat. Sci. Rev. 201, 124–146 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Baranskaya, A. V. et al. A postglacial relative sea-level database for the Russian Arctic coast. Quat. Sci. Rev. 199, 188–205 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Steffen, H. & Kaufmann, G. Glacial isostatic adjustment of Scandinavia and northwestern Europe and the radial viscosity structure of the Earth’s mantle. Geophys. J. Int. 163, 801–812 (2005).

    ADS  Article  Google Scholar 

  35. 35.

    Wu, P. Sensitivity of relative sea levels and crustal velocities in Laurentide to radial and lateral viscosity variations in the mantle. Geophys. J. Int. 165, 401–413 (2006).

    ADS  Article  Google Scholar 

  36. 36.

    RAISED Consortium et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).

  37. 37.

    Helmens, K. F. The Last Interglacial–Glacial cycle (MIS 5–2) re-examined based on long proxy records from central and northern Europe. Quat. Sci. Rev. 86, 115–143 (2014).

    ADS  Article  Google Scholar 

  38. 38.

    Hughes, A. L., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets–a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1–45 (2016).

    Article  Google Scholar 

  39. 39.

    Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).

    ADS  Article  Google Scholar 

  40. 40.

    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  41. 41.

    Shakun, J. D., Lea, D. W., Lisiecki, L. E. & Raymo, M. E. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth Planet. Sci. Lett. 426, 58–68 (2015).

    ADS  CAS  Article  Google Scholar 

  42. 42.

    Gowan, E. J. Comparison of the PaleoMIST 1.0 ice sheet margins, ice sheet and paleo-topography reconstruction with paleo sea level indicators. https://doi.org/10.5281/zenodo.4061594 (2020).

  43. 43.

    Spada, G. & Stocchi, P. SELEN: a Fortran 90 program for solving the “sea-level equation”. Computers Geosci. 33, 538–562 (2007).

    ADS  Article  Google Scholar 

  44. 44.

    de Boer, B., Stocchi, P. & Van De Wal, R. A fully coupled 3-D ice-sheet-sea-level model: algorithm and applications. Geosci. Model Dev. 7, 2141–2156 (2014).

    ADS  Article  Google Scholar 

  45. 45.

    de Boer, B., Stocchi, P., Whitehouse, P. L. & van de Wal, R. S. Current state and future perspectives on coupled ice-sheet— sea-level modelling. Quat. Sci. Rev. 169, 13–28 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Steffen, H. & Wu, P. Glacial isostatic adjustment in Fennoscandia–a review of data and modeling. J. Geodynamics 52, 169–204 (2011).

    ADS  Article  Google Scholar 

  47. 47.

    Simon, K. M., James, T. S., Henton, J. A. & Dyke, A. S. A glacial isostatic adjustment model for the central and northern Laurentide Ice Sheet based on relative sea level and GPS measurements. Geophys. J. Int. 205, 1618–1636 (2016).

    ADS  Article  Google Scholar 

  48. 48.

    Shewchuk, J. R. Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. in Applied Computational Geometry Towards Geometric Engineering (eds Lin, M. C. & Manocha, D.) 203–222 (Springer Berlin Heidelberg, 1996).

  49. 49.

    Wessel, P., Smith, W. H., Scharroo, R., Luis, J. & Wobbe, F. Generic mapping tools: improved version released. Eos, Trans. Am. Geophys. Union 94, 409–410 (2013).

    ADS  Article  Google Scholar 

  50. 50.

    Dalton, A. S. et al. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quat. Sci. Rev. 234, 106223 (2020).

    Article  Google Scholar 

  51. 51.

    Davies, B. J. et al. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth-Sci. Rev. 204, 103152 (2020).

    Article  Google Scholar 

  52. 52.

    Khan, N. S. et al. Inception of a global atlas of sea levels since the Last Glacial Maximum. Quat. Sci. Rev. 220, 359–371 (2019).

    ADS  Article  Google Scholar 

  53. 53.

    Engelhart, S. E. & Horton, B. P. Holocene sea level database for the Atlantic coast of the United States. Quat. Sci. Rev. 54, 12–25 (2012).

    ADS  Article  Google Scholar 

  54. 54.

    Hibbert, F. D. et al. Coral indicators of past sea-level change: a global repository of U-series dated benchmarks. Quat. Sci. Rev. 145, 1–56 (2016).

    ADS  Article  Google Scholar 

  55. 55.

    Mann, T. et al. Holocene sea levels in Southeast Asia, Maldives, India and Sri Lanka: The SEAMIS database. Quat. Sci. Rev. 219, 112–125 (2019).

    ADS  Article  Google Scholar 

  56. 56.

    Hijma, M. P. & Cohen, K. M. Holocene sea-level database for the Rhine-Meuse Delta, The Netherlands: implications for the pre-8.2 ka sea-level jump. Quat. Sci. Rev. 214, 68–86 (2019).

    ADS  Article  Google Scholar 

  57. 57.

    Schaffer, J. et al. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst. Sci. Data 8, 543–557 (2016).

    ADS  Article  Google Scholar 

  58. 58.

    Tegmark, M. An icosahedron-based method for pixelizing the celestial sphere. Astrophysical J. Lett. 470, L81–L84 (1996).

    ADS  Article  Google Scholar 

  59. 59.

    Khosravi, S. Comparison of the Past Climate in Northern Canada and Greenland. Master’s thesis, University of Bremen (2017).

  60. 60.

    Gowan, E. J. Model of the western Laurentide Ice Sheet, North America. Ph.D. thesis, The Australian National University, Canberra, ACT, Australia (2014).

  61. 61.

    Reeh, N. A plasticity theory approach to the steady-state shape of a three-dimensional ice sheet. J. Glaciol. 28, 431–455 (1982).

    ADS  Article  Google Scholar 

  62. 62.

    Fisher, D., Reeh, N. & Langley, K. Objective reconstructions of the Late Wisconsinan Laurentide Ice Sheet and the significance of deformable beds. Géographie Phys. et. Quat. 39, 229–238 (1985).

    Article  Google Scholar 

  63. 63.

    Dyke, A. S. An outline of North American deglaciation with emphasis on central and northern Canada. In Quaternary Glaciations–Extent and Chronology—Part II: North America, Developments in Quaternary Science (eds Ehlers, J. et al.) 373–424 (Elsevier, 2004).

  64. 64.

    Shaw, J. et al. A conceptual model of the deglaciation of Atlantic Canada. Quat. Sci. Rev. 25, 2059–2081 (2006).

    ADS  Article  Google Scholar 

  65. 65.

    Occhietti, S., Parent, M., Lajeunesse, P., Robert, F. & Govare, E. Late Pleistocene-early Holocene decay of the Laurentide ice sheet in Québec-Labrador. Dev. Quat. Sci. 15, 601–630 (2011).

    Google Scholar 

  66. 66.

    Ehlers, J., Gibbard, P. L. & Hughes, P. D. Introduction. in Quaternary Glaciations—Extent and Chronology A Closer Look, Vol. 15 of Developments in Quaternary Sciences (eds Ehlers, J. et al.) Chapter 1, 1–4 (Elsevier, 2011).

  67. 67.

    Ingólfsson, Ó. & Landvik, J. Y. The Svalbard–Barents Sea ice-sheet–Historical, current and future perspectives. Quat. Sci. Rev. 64, 33–60 (2013).

    ADS  Article  Google Scholar 

  68. 68.

    Lambeck, K., Purcell, A., Zhao, J. & Svensson, N.-O. The Scandinavian Ice Sheet: from MIS 4 to the end of the Last Glacial Maximum. Boreas 39, 410–435 (2010).

    Article  Google Scholar 

  69. 69.

    Darvill, C. M., Stokes, C. R., Bentley, M. J., Evans, D. J. & Lovell, H. Dynamics of former ice lobes of the southernmost Patagonian Ice Sheet based on a glacial landsystems approach. J. Quat. Sci. 32, 857–876 (2017).

    Article  Google Scholar 

  70. 70.

    Larter, R. D. et al. Reconstruction of changes in the Amundsen Sea and Bellingshausen sea sector of the West Antarctic ice sheet since the last glacial maximum. Quat. Sci. Rev. 100, 55–86 (2014).

    ADS  Article  Google Scholar 

  71. 71.

    Bart, P. J. & Owolana, B. On the duration of West Antarctic Ice Sheet grounding events in Ross Sea during the Quaternary. Quat. Sci. Rev. 47, 101–115 (2012).

    ADS  Article  Google Scholar 

  72. 72.

    Emslie, S. D., Coats, L. & Licht, K. A 45,000 yr record of Adélie penguins and climate change in the Ross Sea, Antarctica. Geology 35, 61–64 (2007).

    ADS  Article  Google Scholar 

  73. 73.

    Berg, S. et al. Unglaciated areas in East Antarctica during the Last Glacial (Marine Isotope Stage 3)–New evidence from Rauer Group. Quat. Sci. Rev. 153, 1–10 (2016).

    ADS  Article  Google Scholar 

  74. 74.

    Paulen, R. C., Smith, I. R. & Hickin, A. S. Middle Wisconsin radiocarbon dated wood in glacial sediments exposed in the Muskeg river (NTS 95B) Region. Open File 8477, Geological Survey of Canada. https://doi.org/10.4095/313419 (2019). GEM-2 Southern Mackenzie Surficial activity 2018 report: surficial geology and heavy mineral studies in southern Northwest Territories.

  75. 75.

    Lakeman, T. R. & England, J. H. Facies and stratigraphical analyses of glacial and interglacial sediments at Morgan Bluffs, Banks Island, Canadian Arctic Archipelago. Boreas 43, 895–913 (2014).

    Article  Google Scholar 

  76. 76.

    Johnson, W. H. et al. Late Quaternary temporal and event classifications, Great Lakes region, North America. Quat. Res. 47, 1–12 (1997).

    ADS  CAS  Article  Google Scholar 

  77. 77.

    Stea, R. R. et al. The Appalachian Glacier Complex in Maritime Canada. in Quaternary Glaciations—Extent and Chronology A Closer Look, Vol. 15 of Developments in Quaternary Sciences (eds Ehlers, J. et al.) Chapter 48, 631–659 (Elsevier, 2011).

  78. 78.

    Briner, J., Axford, Y., Forman, S., Miller, G. & Wolfe, A. Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology 35, 887–890 (2007).

    ADS  Article  Google Scholar 

  79. 79.

    Kleman, J. et al. North American Ice Sheet build-up during the last glacial cycle, 115–21kyr. Quat. Sci. Rev. 29, 2036–2051 (2010).

    ADS  Article  Google Scholar 

  80. 80.

    Parent, M., Paradis, S. J. & Boisvert, É. Ice-flow patterns and glacial transport in the eastern Hudson Bay region: implications for the late Quaternary dynamics of the Laurentide Ice Sheet. Can. J. Earth Sci. 32, 2057–2070 (1995).

    ADS  CAS  Article  Google Scholar 

  81. 81.

    McMartin, I. & Dredge, L. A. History of ice flow in the Schultz Lake and Wager Bay areas, Kivalliq region, Nunavut. Current Research 2005-B2, Geological Survey of Canada. https://doi.org/10.4095/220376 (2005).

  82. 82.

    Clague, J. J. & Ward, B. Pleistocene Glaciation of British Columbia. in Quaternary Glaciations—Extent and Chronology A Closer Look, Vol. 15 of Developments in Quaternary Sciences (eds Ehlers, J., Gibbard, P. L. & Hughes, P. D.) Chapter 44, 563–573 (Elsevier, 2011).

  83. 83.

    Clague, J. J., Hebda, R. J. & Mathewes, R. W. Stratigraphy and paleoecology of Pleistocene interstadial sediments, central British Columbia. Quat. Res. 34, 208–226 (1990).

    Article  Google Scholar 

  84. 84.

    Lesemann, J.-E., Brennand, T. A., Lian, O. B. & Sanborn, P. A refined understanding of the paleoenvironmental history recorded at the Okanagan Centre section, an MIS 4 stratotype, south-central British Columbia, Canada. J. Quat. Sci. 28, 729–747 (2013).

    Article  Google Scholar 

  85. 85.

    Hebda, R. J., Lian, O. B. & Hicock, S. R. Olympia Interstadial: vegetation, landscape history, and paleoclimatic implications of a mid-Wisconsinan (MIS3) nonglacial sequence from southwest British Columbia, Canada. Can. J. Earth Sci. 53, 304–320 (2016).

    ADS  CAS  Article  Google Scholar 

  86. 86.

    Ward, B. C., Bond, J. D. & Gosse, J. C. Evidence for a 55–50 ka (early Wisconsin) glaciation of the Cordilleran ice sheet, Yukon Territory, Canada. Quat. Res. 68, 141–150 (2007).

    Article  Google Scholar 

  87. 87.

    Kaufman, D. S., Young, N. E., Briner, J. P. & Manley, W. F. Alaska palaeo-glacier atlas (version 2). in Quaternary Glaciations — Extent and Chronology A Closer Look, Vol 15 of Developments in Quaternary Sciences(eds Ehlers, J., Gibbard, P. L. & Hughes, P. D.), Chapter 33, 427–445 (Elsevier, 2011).

  88. 88.

    Mathewes, R. W., Lian, O. B., Clague, J. J. & Huntley, M. J. W. Early Wisconsinan (MIS 4) glaciation on Haida Gwaii, British Columbia, and implications for biological refugia. Can. J. Earth Sci. 52, 939–951 (2015).

    ADS  Article  Google Scholar 

  89. 89.

    McDonald, E. V., Sweeney, M. R. & Busacca, A. J. Glacial outburst floods and loess sedimentation documented during Oxygen Isotope Stage 4 on the Columbia Plateau, Washington State. Quat. Sci. Rev. 45, 18–30 (2012).

    ADS  Article  Google Scholar 

  90. 90.

    Tulenko, J. P., Briner, J. P., Young, N. E. & Schaefer, J. M. Beryllium-10 chronology of early and late Wisconsinan moraines in the Revelation Mountains, Alaska: insights into the forcing of Wisconsinan glaciation in Beringia. Quat. Sci. Rev. 197, 129–141 (2018).

    ADS  Article  Google Scholar 

  91. 91.

    Dethier, D., Dragovich, J., Sarna-Wojcicki, A. & Fleck, R. Pumice in the interglacial Whidbey Formation at Blowers Bluff, central Whidbey Island, WA, USA. Quat. Int. 178, 229–237 (2008).

    Article  Google Scholar 

  92. 92.

    Alley, R. B. et al. History of the Greenland Ice Sheet: paleoclimatic insights. Quat. Sci. Rev. 29, 1728–1756 (2010).

    ADS  Article  Google Scholar 

  93. 93.

    Simon, Q., Hillaire-Marcel, C., St-Onge, G. & Andrews, J. T. North-eastern Laurentide, western Greenland and southern Innuitian ice stream dynamics during the last glacial cycle. J. Quat. Sci. 29, 14–26 (2014).

    Article  Google Scholar 

  94. 94.

    Funder, S., Kjeldsen, K. K., Kjær, K. H. & Ó Cofaigh, C. The Greenland Ice Sheet during the past 300,000 years: a review. in Quaternary Glaciations — Extent and Chronology A Closer Look, Vol 15 of Developments in Quaternary Sciences (eds Ehlers, J., Gibbard, P. L. & Hughes, P. D.), Chapter 50, 699–713 (Elsevier, 2011).

  95. 95.

    Larsen, N. K. et al. Instability of the Northeast Greenland Ice Stream over the last 45,000 years. Nat. Commun. 9, 1872 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Søndergaard, A. S., Larsen, N. K., Olsen, J., Strunk, A. & Woodroffe, S. Glacial history of the Greenland Ice Sheet and a local ice cap in Qaanaaq, northwest Greenland. J. Quat. Sci. 34, 536–547 (2019).

    Article  Google Scholar 

  97. 97.

    England, J. H., Atkinson, N., Dyke, A. S., Evans, D. J. & Zreda, M. Late Wisconsinan buildup and wastage of the Innuitian Ice Sheet across southern Ellesmere Island, Nunavut. Can. J. Earth Sci. 41, 39–61 (2004).

    ADS  Article  Google Scholar 

  98. 98.

    England, J. et al. The Innuitian Ice Sheet: configuration, dynamics and chronology. Quat. Sci. Rev. 25, 689–703 (2006).

    ADS  Article  Google Scholar 

  99. 99.

    Larsen, N. K. et al. Late Quaternary glaciation history of northernmost Greenland–Evidence of shelf-based ice. Quat. Sci. Rev. 29, 3399–3414 (2010).

    ADS  Article  Google Scholar 

  100. 100.

    Gowan, E. J., Niu, L., Knorr, G. & Lohmann, G. Geology datasets in North America, Greenland and surrounding areas for use with ice sheet models. Earth Syst. Sci. Data 11, 375–391 (2019).

    ADS  Article  Google Scholar 

  101. 101.

    James, T. S., Gowan, E. J., Wada, I. & Wang, K. Viscosity of the asthenosphere from glacial isostatic adjustment and subduction dynamics at the northern Cascadia subduction zone, British Columbia, Canada. J. Geophys. Res.: Solid Earth 114, B04405 (2009).

    ADS  Google Scholar 

  102. 102.

    Peltier, W. & Fairbanks, R. G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 25, 3322–3337 (2006).

    ADS  Article  Google Scholar 

  103. 103.

    Hanebuth, T., Stattegger, K. & Grootes, P. M. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288, 1033–1035 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  104. 104.

    Hanebuth, T., Stattegger, K. & Bojanowski, A. Termination of the Last Glacial Maximum sea-level lowstand: the Sunda-Shelf data revisited. Glob. Planet. Change 66, 76–84 (2009).

    ADS  Article  Google Scholar 

  105. 105.

    Ishiwa, T. et al. A sea-level plateau preceding the Marine Isotope Stage 2 minima revealed by Australian sediments. Sci. Rep. 9, 6449 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  106. 106.

    Yokoyama, Y. et al. Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum. Nature 559, 603 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

Original Text (This is the original text for your reference.)

  1. 1.

    Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res.: Solid Earth 120, 450–487 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Lambeck, K., Purcell, A. & Zhao, S. The North American Late Wisconsin ice sheet and mantle viscosity from glacial rebound analyses. Quat. Sci. Rev. 158, 172–210 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Tarasov, L., Dyke, A. S., Neal, R. M. & Peltier, W. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett. 315–316, 30–40 (2012).

    ADS  Article  CAS  Google Scholar 

  4. 4.

    Stokes, C. R., Tarasov, L. & Dyke, A. S. Dynamics of the North American Ice Sheet Complex during its inception and build-up to the last glacial maximum. Quat. Sci. Rev. 50, 86–104 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Dalton, A. S., Finkelstein, S. A., Barnett, P. J. & Forman, S. L. Constraining the Late Pleistocene history of the Laurentide Ice Sheet by dating the Missinaibi Formation, Hudson Bay Lowlands, Canada. Quat. Sci. Rev. 146, 288–299 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Dalton, A. S. et al. Was the Laurentide Ice Sheet significantly reduced during Marine Isotope Stage 3? Geology 47, 111–114 (2019).

    ADS  Article  Google Scholar 

  7. 7.

    McMartin, I., Campbell, J. E. & Dredge, L. A. Middle Wisconsinan marine shells near Repulse Bay, Nunavut, Canada: implications for Marine Isotope Stage 3 ice-free conditions and Laurentide Ice Sheet dynamics in north-west Hudson Bay. J. Quat. Sci. 34, 64–75 (2019).

    Article  Google Scholar 

  8. 8.

    Dalton, A. S., Väliranta, M., Barnett, P. J. & Finkelstein, S. A. Pollen and macrofossil-inferred palaeoclimate at the Ridge Site, Hudson Bay Lowlands, Canada: evidence for a dry climate and significant recession of the Laurentide Ice Sheet during Marine Isotope Stage 3. Boreas 46, 388–401 (2017).

    Article  Google Scholar 

  9. 9.

    Pico, T., Creveling, J. & Mitrovica, J. Sea-level records from the US mid-Atlantic constrain Laurentide Ice Sheet extent during Marine Isotope Stage 3. Nat. Commun. 8, 15612 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Miller, G. H. & Andrews, J. T. Hudson Bay was not deglaciated during MIS-3. Quat. Sci. Rev. 225, 105944 (2019).

    Article  Google Scholar 

  11. 11.

    Pico, T., Mitrovica, J. X., Ferrier, K. L. & Braun, J. Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta. Quat. Sci. Rev. 152, 72–79 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Pico, T., Birch, L., Weisenberg, J. & Mitrovica, J. Refining the Laurentide Ice Sheet at Marine Isotope Stage 3: a data-based approach combining glacial isostatic simulations with a dynamic ice model. Quat. Sci. Rev. 195, 171–179 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Gowan, E. J., Tregoning, P., Purcell, A., Montillet, J.-P. & McClusky, S. A model of the western Laurentide Ice Sheet, using observations of glacial isostatic adjustment. Quat. Sci. Rev. 139, 1–16 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Gowan, E. J. et al. ICESHEET 1.0: a program to produce paleo-ice sheet reconstructions with minimal assumptions. Geosci. Model Dev. 9, 1673–1682 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Simms, A. R., Lisiecki, L., Gebbie, G., Whitehouse, P. L. & Clark, J. F. Balancing the Last Glacial Maximum (LGM) sea-level budget. Quat. Sci. Rev. 205, 143–153 (2019).

    ADS  Article  Google Scholar 

  16. 16.

    Potter, E.-K. et al. Suborbital-period sea-level oscillations during marine isotope substages 5a and 5c. Earth Planet. Sci. Lett. 225, 191–204 (2004).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–686 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  18. 18.

    Batchelor, C. L. et al. The configuration of Northern Hemisphere ice sheets through the quaternary. Nat. Commun. 10, 1–10 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Dredge, L. & Thorleifson, L. The Middle Wisconsinan history of the Laurentide ice sheet. Géographie Phys. et. Quat. 41, 215–235 (1987).

    Article  Google Scholar 

  20. 20.

    Dyke, A. S. et al. The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quat. Sci. Rev. 21, 9–31 (2002).

    ADS  Article  Google Scholar 

  21. 21.

    Andrews, J. T. & Voelker, A. H. “Heinrich Events” (& sediments): a history of terminology and recommendations for future usage. Quat. Sci. Rev. 187, 31–40 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Gauthier, M. S. et al. The subglacial mosaic of the Laurentide Ice Sheet; a study of the interior region of southwestern Hudson Bay. Quat. Sci. Rev. 214, 1–27 (2019).

    ADS  Article  Google Scholar 

  23. 23.

    Eyles, N., Eyles, C. H., Woodworth-Lynas, C. & Randall, T. A. The sedimentary record of drifting ice (early Wisconsin Sunnybrook deposit) in an ancestral ice-dammed Lake Ontario, Canada. Quat. Res. 63, 171–181 (2005).

    Article  Google Scholar 

  24. 24.

    Karrow, P. F., Dreimanis, A. & Barnett, P. J. A proposed diachronic revision of late Quaternary time-stratigraphic classification in the eastern and northern Great Lakes area. Quat. Res. 54, 1–12 (2000).

    Article  Google Scholar 

  25. 25.

    Mulligan, R. P. & Bajc, A. F. The pre-Late Wisconsin stratigraphy of southern Simcoe County, Ontario: implications for ice sheet buildup, decay, and Great Lakes drainage evolution. Can. J. Earth Sci. 55, 709–729 (2018).

    ADS  Article  Google Scholar 

  26. 26.

    Karig, D. E. & Miller, N. G. Middle Wisconsin glacial advance into the Appalachian Plateau, Sixmile Creek, Tompkins Co., NY. Quat. Res. 80, 522–533 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Munroe, J. S., Perzan, Z. M. & Amidon, W. H. Cave sediments constrain the latest Pleistocene advance of the Laurentide Ice Sheet in the Champlain Valley, Vermont, USA. J. Quat. Sci. 31, 893–904 (2016).

    Article  Google Scholar 

  28. 28.

    Young, R. A. & Burr, G. S. Middle Wisconsin glaciation in the Genesee Valley, NY: a stratigraphic record contemporaneous with Heinrich Event, H4. Geomorphology 75, 226–247 (2006).

    ADS  Article  Google Scholar 

  29. 29.

    Svendsen, J. I. et al. Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev. 23, 1229–1271 (2004).

    ADS  Article  Google Scholar 

  30. 30.

    Margold, M., Stokes, C. R. & Clark, C. D. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet. Quat. Sci. Rev. 189, 1–30 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  32. 32.

    Vacchi, M. et al. Postglacial relative sea-level histories along the eastern Canadian coastline. Quat. Sci. Rev. 201, 124–146 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Baranskaya, A. V. et al. A postglacial relative sea-level database for the Russian Arctic coast. Quat. Sci. Rev. 199, 188–205 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Steffen, H. & Kaufmann, G. Glacial isostatic adjustment of Scandinavia and northwestern Europe and the radial viscosity structure of the Earth’s mantle. Geophys. J. Int. 163, 801–812 (2005).

    ADS  Article  Google Scholar 

  35. 35.

    Wu, P. Sensitivity of relative sea levels and crustal velocities in Laurentide to radial and lateral viscosity variations in the mantle. Geophys. J. Int. 165, 401–413 (2006).

    ADS  Article  Google Scholar 

  36. 36.

    RAISED Consortium et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).

  37. 37.

    Helmens, K. F. The Last Interglacial–Glacial cycle (MIS 5–2) re-examined based on long proxy records from central and northern Europe. Quat. Sci. Rev. 86, 115–143 (2014).

    ADS  Article  Google Scholar 

  38. 38.

    Hughes, A. L., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets–a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1–45 (2016).

    Article  Google Scholar 

  39. 39.

    Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).

    ADS  Article  Google Scholar 

  40. 40.

    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  41. 41.

    Shakun, J. D., Lea, D. W., Lisiecki, L. E. & Raymo, M. E. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth Planet. Sci. Lett. 426, 58–68 (2015).

    ADS  CAS  Article  Google Scholar 

  42. 42.

    Gowan, E. J. Comparison of the PaleoMIST 1.0 ice sheet margins, ice sheet and paleo-topography reconstruction with paleo sea level indicators. https://doi.org/10.5281/zenodo.4061594 (2020).

  43. 43.

    Spada, G. & Stocchi, P. SELEN: a Fortran 90 program for solving the “sea-level equation”. Computers Geosci. 33, 538–562 (2007).

    ADS  Article  Google Scholar 

  44. 44.

    de Boer, B., Stocchi, P. & Van De Wal, R. A fully coupled 3-D ice-sheet-sea-level model: algorithm and applications. Geosci. Model Dev. 7, 2141–2156 (2014).

    ADS  Article  Google Scholar 

  45. 45.

    de Boer, B., Stocchi, P., Whitehouse, P. L. & van de Wal, R. S. Current state and future perspectives on coupled ice-sheet— sea-level modelling. Quat. Sci. Rev. 169, 13–28 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Steffen, H. & Wu, P. Glacial isostatic adjustment in Fennoscandia–a review of data and modeling. J. Geodynamics 52, 169–204 (2011).

    ADS  Article  Google Scholar 

  47. 47.

    Simon, K. M., James, T. S., Henton, J. A. & Dyke, A. S. A glacial isostatic adjustment model for the central and northern Laurentide Ice Sheet based on relative sea level and GPS measurements. Geophys. J. Int. 205, 1618–1636 (2016).

    ADS  Article  Google Scholar 

  48. 48.

    Shewchuk, J. R. Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. in Applied Computational Geometry Towards Geometric Engineering (eds Lin, M. C. & Manocha, D.) 203–222 (Springer Berlin Heidelberg, 1996).

  49. 49.

    Wessel, P., Smith, W. H., Scharroo, R., Luis, J. & Wobbe, F. Generic mapping tools: improved version released. Eos, Trans. Am. Geophys. Union 94, 409–410 (2013).

    ADS  Article  Google Scholar 

  50. 50.

    Dalton, A. S. et al. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quat. Sci. Rev. 234, 106223 (2020).

    Article  Google Scholar 

  51. 51.

    Davies, B. J. et al. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth-Sci. Rev. 204, 103152 (2020).

    Article  Google Scholar 

  52. 52.

    Khan, N. S. et al. Inception of a global atlas of sea levels since the Last Glacial Maximum. Quat. Sci. Rev. 220, 359–371 (2019).

    ADS  Article  Google Scholar 

  53. 53.

    Engelhart, S. E. & Horton, B. P. Holocene sea level database for the Atlantic coast of the United States. Quat. Sci. Rev. 54, 12–25 (2012).

    ADS  Article  Google Scholar 

  54. 54.

    Hibbert, F. D. et al. Coral indicators of past sea-level change: a global repository of U-series dated benchmarks. Quat. Sci. Rev. 145, 1–56 (2016).

    ADS  Article  Google Scholar 

  55. 55.

    Mann, T. et al. Holocene sea levels in Southeast Asia, Maldives, India and Sri Lanka: The SEAMIS database. Quat. Sci. Rev. 219, 112–125 (2019).

    ADS  Article  Google Scholar 

  56. 56.

    Hijma, M. P. & Cohen, K. M. Holocene sea-level database for the Rhine-Meuse Delta, The Netherlands: implications for the pre-8.2 ka sea-level jump. Quat. Sci. Rev. 214, 68–86 (2019).

    ADS  Article  Google Scholar 

  57. 57.

    Schaffer, J. et al. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst. Sci. Data 8, 543–557 (2016).

    ADS  Article  Google Scholar 

  58. 58.

    Tegmark, M. An icosahedron-based method for pixelizing the celestial sphere. Astrophysical J. Lett. 470, L81–L84 (1996).

    ADS  Article  Google Scholar 

  59. 59.

    Khosravi, S. Comparison of the Past Climate in Northern Canada and Greenland. Master’s thesis, University of Bremen (2017).

  60. 60.

    Gowan, E. J. Model of the western Laurentide Ice Sheet, North America. Ph.D. thesis, The Australian National University, Canberra, ACT, Australia (2014).

  61. 61.

    Reeh, N. A plasticity theory approach to the steady-state shape of a three-dimensional ice sheet. J. Glaciol. 28, 431–455 (1982).

    ADS  Article  Google Scholar 

  62. 62.

    Fisher, D., Reeh, N. & Langley, K. Objective reconstructions of the Late Wisconsinan Laurentide Ice Sheet and the significance of deformable beds. Géographie Phys. et. Quat. 39, 229–238 (1985).

    Article  Google Scholar 

  63. 63.

    Dyke, A. S. An outline of North American deglaciation with emphasis on central and northern Canada. In Quaternary Glaciations–Extent and Chronology—Part II: North America, Developments in Quaternary Science (eds Ehlers, J. et al.) 373–424 (Elsevier, 2004).

  64. 64.

    Shaw, J. et al. A conceptual model of the deglaciation of Atlantic Canada. Quat. Sci. Rev. 25, 2059–2081 (2006).

    ADS  Article  Google Scholar 

  65. 65.

    Occhietti, S., Parent, M., Lajeunesse, P., Robert, F. & Govare, E. Late Pleistocene-early Holocene decay of the Laurentide ice sheet in Québec-Labrador. Dev. Quat. Sci. 15, 601–630 (2011).

    Google Scholar 

  66. 66.

    Ehlers, J., Gibbard, P. L. & Hughes, P. D. Introduction. in Quaternary Glaciations—Extent and Chronology A Closer Look, Vol. 15 of Developments in Quaternary Sciences (eds Ehlers, J. et al.) Chapter 1, 1–4 (Elsevier, 2011).

  67. 67.

    Ingólfsson, Ó. & Landvik, J. Y. The Svalbard–Barents Sea ice-sheet–Historical, current and future perspectives. Quat. Sci. Rev. 64, 33–60 (2013).

    ADS  Article  Google Scholar 

  68. 68.

    Lambeck, K., Purcell, A., Zhao, J. & Svensson, N.-O. The Scandinavian Ice Sheet: from MIS 4 to the end of the Last Glacial Maximum. Boreas 39, 410–435 (2010).

    Article  Google Scholar 

  69. 69.

    Darvill, C. M., Stokes, C. R., Bentley, M. J., Evans, D. J. & Lovell, H. Dynamics of former ice lobes of the southernmost Patagonian Ice Sheet based on a glacial landsystems approach. J. Quat. Sci. 32, 857–876 (2017).

    Article  Google Scholar 

  70. 70.

    Larter, R. D. et al. Reconstruction of changes in the Amundsen Sea and Bellingshausen sea sector of the West Antarctic ice sheet since the last glacial maximum. Quat. Sci. Rev. 100, 55–86 (2014).

    ADS  Article  Google Scholar 

  71. 71.

    Bart, P. J. & Owolana, B. On the duration of West Antarctic Ice Sheet grounding events in Ross Sea during the Quaternary. Quat. Sci. Rev. 47, 101–115 (2012).

    ADS  Article  Google Scholar 

  72. 72.

    Emslie, S. D., Coats, L. & Licht, K. A 45,000 yr record of Adélie penguins and climate change in the Ross Sea, Antarctica. Geology 35, 61–64 (2007).

    ADS  Article  Google Scholar 

  73. 73.

    Berg, S. et al. Unglaciated areas in East Antarctica during the Last Glacial (Marine Isotope Stage 3)–New evidence from Rauer Group. Quat. Sci. Rev. 153, 1–10 (2016).

    ADS  Article  Google Scholar 

  74. 74.

    Paulen, R. C., Smith, I. R. & Hickin, A. S. Middle Wisconsin radiocarbon dated wood in glacial sediments exposed in the Muskeg river (NTS 95B) Region. Open File 8477, Geological Survey of Canada. https://doi.org/10.4095/313419 (2019). GEM-2 Southern Mackenzie Surficial activity 2018 report: surficial geology and heavy mineral studies in southern Northwest Territories.

  75. 75.

    Lakeman, T. R. & England, J. H. Facies and stratigraphical analyses of glacial and interglacial sediments at Morgan Bluffs, Banks Island, Canadian Arctic Archipelago. Boreas 43, 895–913 (2014).

    Article  Google Scholar 

  76. 76.

    Johnson, W. H. et al. Late Quaternary temporal and event classifications, Great Lakes region, North America. Quat. Res. 47, 1–12 (1997).

    ADS  CAS  Article  Google Scholar 

  77. 77.

    Stea, R. R. et al. The Appalachian Glacier Complex in Maritime Canada. in Quaternary Glaciations—Extent and Chronology A Closer Look, Vol. 15 of Developments in Quaternary Sciences (eds Ehlers, J. et al.) Chapter 48, 631–659 (Elsevier, 2011).

  78. 78.

    Briner, J., Axford, Y., Forman, S., Miller, G. & Wolfe, A. Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology 35, 887–890 (2007).

    ADS  Article  Google Scholar 

  79. 79.

    Kleman, J. et al. North American Ice Sheet build-up during the last glacial cycle, 115–21kyr. Quat. Sci. Rev. 29, 2036–2051 (2010).

    ADS  Article  Google Scholar 

  80. 80.

    Parent, M., Paradis, S. J. & Boisvert, É. Ice-flow patterns and glacial transport in the eastern Hudson Bay region: implications for the late Quaternary dynamics of the Laurentide Ice Sheet. Can. J. Earth Sci. 32, 2057–2070 (1995).

    ADS  CAS  Article  Google Scholar 

  81. 81.

    McMartin, I. & Dredge, L. A. History of ice flow in the Schultz Lake and Wager Bay areas, Kivalliq region, Nunavut. Current Research 2005-B2, Geological Survey of Canada. https://doi.org/10.4095/220376 (2005).

  82. 82.

    Clague, J. J. & Ward, B. Pleistocene Glaciation of British Columbia. in Quaternary Glaciations—Extent and Chronology A Closer Look, Vol. 15 of Developments in Quaternary Sciences (eds Ehlers, J., Gibbard, P. L. & Hughes, P. D.) Chapter 44, 563–573 (Elsevier, 2011).

  83. 83.

    Clague, J. J., Hebda, R. J. & Mathewes, R. W. Stratigraphy and paleoecology of Pleistocene interstadial sediments, central British Columbia. Quat. Res. 34, 208–226 (1990).

    Article  Google Scholar 

  84. 84.

    Lesemann, J.-E., Brennand, T. A., Lian, O. B. & Sanborn, P. A refined understanding of the paleoenvironmental history recorded at the Okanagan Centre section, an MIS 4 stratotype, south-central British Columbia, Canada. J. Quat. Sci. 28, 729–747 (2013).

    Article  Google Scholar 

  85. 85.

    Hebda, R. J., Lian, O. B. & Hicock, S. R. Olympia Interstadial: vegetation, landscape history, and paleoclimatic implications of a mid-Wisconsinan (MIS3) nonglacial sequence from southwest British Columbia, Canada. Can. J. Earth Sci. 53, 304–320 (2016).

    ADS  CAS  Article  Google Scholar 

  86. 86.

    Ward, B. C., Bond, J. D. & Gosse, J. C. Evidence for a 55–50 ka (early Wisconsin) glaciation of the Cordilleran ice sheet, Yukon Territory, Canada. Quat. Res. 68, 141–150 (2007).

    Article  Google Scholar 

  87. 87.

    Kaufman, D. S., Young, N. E., Briner, J. P. & Manley, W. F. Alaska palaeo-glacier atlas (version 2). in Quaternary Glaciations — Extent and Chronology A Closer Look, Vol 15 of Developments in Quaternary Sciences(eds Ehlers, J., Gibbard, P. L. & Hughes, P. D.), Chapter 33, 427–445 (Elsevier, 2011).

  88. 88.

    Mathewes, R. W., Lian, O. B., Clague, J. J. & Huntley, M. J. W. Early Wisconsinan (MIS 4) glaciation on Haida Gwaii, British Columbia, and implications for biological refugia. Can. J. Earth Sci. 52, 939–951 (2015).

    ADS  Article  Google Scholar 

  89. 89.

    McDonald, E. V., Sweeney, M. R. & Busacca, A. J. Glacial outburst floods and loess sedimentation documented during Oxygen Isotope Stage 4 on the Columbia Plateau, Washington State. Quat. Sci. Rev. 45, 18–30 (2012).

    ADS  Article  Google Scholar 

  90. 90.

    Tulenko, J. P., Briner, J. P., Young, N. E. & Schaefer, J. M. Beryllium-10 chronology of early and late Wisconsinan moraines in the Revelation Mountains, Alaska: insights into the forcing of Wisconsinan glaciation in Beringia. Quat. Sci. Rev. 197, 129–141 (2018).

    ADS  Article  Google Scholar 

  91. 91.

    Dethier, D., Dragovich, J., Sarna-Wojcicki, A. & Fleck, R. Pumice in the interglacial Whidbey Formation at Blowers Bluff, central Whidbey Island, WA, USA. Quat. Int. 178, 229–237 (2008).

    Article  Google Scholar 

  92. 92.

    Alley, R. B. et al. History of the Greenland Ice Sheet: paleoclimatic insights. Quat. Sci. Rev. 29, 1728–1756 (2010).

    ADS  Article  Google Scholar 

  93. 93.

    Simon, Q., Hillaire-Marcel, C., St-Onge, G. & Andrews, J. T. North-eastern Laurentide, western Greenland and southern Innuitian ice stream dynamics during the last glacial cycle. J. Quat. Sci. 29, 14–26 (2014).

    Article  Google Scholar 

  94. 94.

    Funder, S., Kjeldsen, K. K., Kjær, K. H. & Ó Cofaigh, C. The Greenland Ice Sheet during the past 300,000 years: a review. in Quaternary Glaciations — Extent and Chronology A Closer Look, Vol 15 of Developments in Quaternary Sciences (eds Ehlers, J., Gibbard, P. L. & Hughes, P. D.), Chapter 50, 699–713 (Elsevier, 2011).

  95. 95.

    Larsen, N. K. et al. Instability of the Northeast Greenland Ice Stream over the last 45,000 years. Nat. Commun. 9, 1872 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Søndergaard, A. S., Larsen, N. K., Olsen, J., Strunk, A. & Woodroffe, S. Glacial history of the Greenland Ice Sheet and a local ice cap in Qaanaaq, northwest Greenland. J. Quat. Sci. 34, 536–547 (2019).

    Article  Google Scholar 

  97. 97.

    England, J. H., Atkinson, N., Dyke, A. S., Evans, D. J. & Zreda, M. Late Wisconsinan buildup and wastage of the Innuitian Ice Sheet across southern Ellesmere Island, Nunavut. Can. J. Earth Sci. 41, 39–61 (2004).

    ADS  Article  Google Scholar 

  98. 98.

    England, J. et al. The Innuitian Ice Sheet: configuration, dynamics and chronology. Quat. Sci. Rev. 25, 689–703 (2006).

    ADS  Article  Google Scholar 

  99. 99.

    Larsen, N. K. et al. Late Quaternary glaciation history of northernmost Greenland–Evidence of shelf-based ice. Quat. Sci. Rev. 29, 3399–3414 (2010).

    ADS  Article  Google Scholar 

  100. 100.

    Gowan, E. J., Niu, L., Knorr, G. & Lohmann, G. Geology datasets in North America, Greenland and surrounding areas for use with ice sheet models. Earth Syst. Sci. Data 11, 375–391 (2019).

    ADS  Article  Google Scholar 

  101. 101.

    James, T. S., Gowan, E. J., Wada, I. & Wang, K. Viscosity of the asthenosphere from glacial isostatic adjustment and subduction dynamics at the northern Cascadia subduction zone, British Columbia, Canada. J. Geophys. Res.: Solid Earth 114, B04405 (2009).

    ADS  Google Scholar 

  102. 102.

    Peltier, W. & Fairbanks, R. G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 25, 3322–3337 (2006).

    ADS  Article  Google Scholar 

  103. 103.

    Hanebuth, T., Stattegger, K. & Grootes, P. M. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288, 1033–1035 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  104. 104.

    Hanebuth, T., Stattegger, K. & Bojanowski, A. Termination of the Last Glacial Maximum sea-level lowstand: the Sunda-Shelf data revisited. Glob. Planet. Change 66, 76–84 (2009).

    ADS  Article  Google Scholar 

  105. 105.

    Ishiwa, T. et al. A sea-level plateau preceding the Marine Isotope Stage 2 minima revealed by Australian sediments. Sci. Rep. 9, 6449 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  106. 106.

    Yokoyama, Y. et al. Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum. Nature 559, 603 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel