Welcome to the IKCEST
Power sector investment implications of climate impacts on renewable resources in Latin America and the Caribbean
  1. 1.

    Federative Republic of Brazil. Intended Nationally Determined Contribution towards achieving the objective of the United Nations Framework Convention on Climate Change, <https://www4.unfccc.int/sites/submissions/INDC/Published%20Documents/Brazil/1/BRAZIL%20iNDC%20english%20FINAL.pdf> (2015).

  2. 2.

    India. India’s Intended Nationally Determined Contribution: working towards climate justice, <https://www4.unfccc.int/sites/submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf> (2015).

  3. 3.

    SEMARNAT-INECC. Mexico’s Climate Change Mid-Century Strategy, <https://unfccc.int/files/focus/long-term_strategies/application/pdf/mexico_mcs_final_cop22nov16_red.pdf> (2016).

  4. 4.

    IPCC. Special Report on Renewable Energy Sources and Climate Change Mitigation. (Cambridge University Press, New York, NY, 2012).

  5. 5.

    Schaeffer, R. et al. Energy sector vulnerability to climate change: a review. Energy 38, 1–12 (2012).

    Article  Google Scholar 

  6. 6.

    Jerez, S. et al. The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 6, 10014 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Crook, J. A., Jones, L. A., Forster, P. M. & Crook, R. Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy Environ. Sci. 4, 3101–3109 (2011).

    Article  Google Scholar 

  8. 8.

    Wild, M., Folini, D., Henschel, F., Fischer, N. & Müller, B. Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Sol. Energy 116, 12–24 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    Wild, M., Folini, D. & Henschel, F. Impact of climate change on future concentrated solar power (CSP) production. AIP Conf. Proc. 1810, 100007 (2017).

    Article  Google Scholar 

  10. 10.

    Eurek, K. et al. An improved global wind resource estimate for integrated assessment models. Energy Econ. 64, 552–567 (2017).

    Article  Google Scholar 

  11. 11.

    Karnauskas, K. B., Lundquist, J. K. & Zhang, L. Southward shift of the global wind energy resource under high carbon dioxide emissions. Nat. Geosci. 11, 38–43 (2018).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    IPCC. Climate Change 2014: Synthesis Report. (IPCC, Geneva, Switzerland, 2014).

  13. 13.

    Iyer, G. et al. Measuring progress from nationally determined contributions to mid-century strategies. Nat. Clim. Change 7, 871–874 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Yalew, S. G. et al. Impacts of climate change on energy systems in global and regional scenarios. Nature Energy, https://doi.org/10.1038/s41560-020-0664-z (2020).

  15. 15.

    Solaun, K. & Cerdá, E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renew. Sustain. Energy Rev. 116, 109415 (2019).

    Article  Google Scholar 

  16. 16.

    Cronin, J., Anandarajah, G. & Dessens, O. Climate change impacts on the energy system: a review of trends and gaps. Climatic Change 151, 79–93 (2018).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Emodi, N. V., Chaiechi, T. & Beg, A. B. M. R. A. The impact of climate variability and change on the energy system: a systematic scoping review. Sci. Total Environ. 676, 545–563 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  18. 18.

    Arango-Aramburo, S. et al. Climate impacts on hydropower in Colombia: a multi-model assessment of power sector adaptation pathways. Energy Policy 128, 179–188 (2019).

    Article  Google Scholar 

  19. 19.

    Lucena, A. F. P. et al. Interactions between climate change mitigation and adaptation: the case of hydropower in Brazil. Energy 164, 1161–1177 (2018).

    Article  Google Scholar 

  20. 20.

    Turner, S. W. D., Hejazi, M., Kim, S. H., Clarke, L. & Edmonds, J. Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy 141, 2081–2090 (2017).

    Article  Google Scholar 

  21. 21.

    Carvajal, P. E. et al. Large hydropower, decarbonisation and climate change uncertainty: modelling power sector pathways for Ecuador. Energy Strategy Rev. 23, 86–99 (2019).

    Article  Google Scholar 

  22. 22.

    Zhou, Q., Hanasaki, N., Fujimori, S., Masaki, Y. & Hijioka, Y. Economic consequences of global climate change and mitigation on future hydropower generation. Climatic Change 147, 77–90 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    Savelsberg, J., Schillinger, M., Schlecht, I. & Weigt, H. The impact of climate change on swiss hydropower. Sustainability 10, https://doi.org/10.3390/su10072541 (2018).

  24. 24.

    Dowling, P. The impact of climate change on the European energy system. Energy Policy 60, 406–417 (2013).

    Article  Google Scholar 

  25. 25.

    Kyle, P., Müller, C., Calvin, K. & Thomson, A. Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts. Earth’s Future 2, 83–98 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Nelson, G. C. et al. Climate change effects on agriculture: economic responses to biophysical shocks. Proc. Natl Acad. Sci. USA 111, 3274 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  27. 27.

    Ren, X. et al. Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS). Climatic Change 146, 517–531 (2018).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Snyder, A., Calvin, K. V., Phillips, M. & Ruane, A. C. A crop yield change emulator for use in GCAM and similar models: Persephone v1.0. Geosci. Model Dev. 12, 1319–1350 (2019).

    ADS  Article  Google Scholar 

  29. 29.

    Gernaat, D. E. H. J. et al. Climate change impacts on renewable energy supply. Nature Climate Change 11, 119–125 (2021).

  30. 30.

    Calvin, K. et al. GCAM v5. 1: representing the linkages between energy, water, land, climate, and economic systems. Geoscientific Model Dev. 12, 677–698 (2019).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    EIA. Independent Statistics & Analysis, <https://www.eia.gov/international/data/world> (2019).

  32. 32.

    IRENA. Renewable Energy Statistics 2018. 1 –348 (International Renewable Energy Agency, 2018).

  33. 33.

    IRENA. Renewable Energy Market Analysis: Latin America. (International Renewable Energy Agency Abu Dhabi, 2016).

  34. 34.

    IEA. Data and statistics, <https://www.iea.org/data-and-statistics> (2019).

  35. 35.

    van Ruijven, B. J. et al. Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions. Energy Econ. 56, 499–512 (2016).

    Article  Google Scholar 

  36. 36.

    Binsted, M. et al. Stranded asset implications of the Paris Agreement in Latin America and the Caribbean. Environ. Res. Lett. 15, 044026 (2020).

    ADS  Article  Google Scholar 

  37. 37.

    Santos Da Silva, S. R. et al. The Paris pledges and the energy-water-land nexus in Latin America: exploring implications of greenhouse gas emission reductions. PLOS ONE 14, e0215013 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    van der Zwaan, B. et al. Energy technology roll-out for climate change mitigation: a multi-model study for Latin America. Energy Econ. 56, 526–542 (2016).

    Article  Google Scholar 

  39. 39.

    Kober, T. et al. A multi-model study of energy supply investments in Latin America under climate control policy. Energy Econ. 56, 543–551 (2016).

    Article  Google Scholar 

  40. 40.

    Lucena, A. F. P. et al. Climate policy scenarios in Brazil: a multi-model comparison for energy. Energy Econ. 56, 564–574 (2016).

    Article  Google Scholar 

  41. 41.

    Calderón, S. et al. Achieving CO2 reductions in Colombia: effects of carbon taxes and abatement targets. Energy Econ. 56, 575–586 (2016).

    Article  Google Scholar 

  42. 42.

    Magrin, G. O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds V. R. Barros et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014).

  43. 43.

    Ruffato-Ferreira, V. et al. A foundation for the strategic long-term planning of the renewable energy sector in Brazil: Hydroelectricity and wind energy in the face of climate change scenarios. Renew. Sustain. Energy Rev. 72, 1124–1137 (2017).

    Article  Google Scholar 

  44. 44.

    Zarrar, K. et al. Integrated energy-water-land nexus planning to guide national policy: an example from Uruguay. Environ. Res. Lett. 15, 094014 (2020).

  45. 45.

    Popescu, I., Brandimarte, L. & Peviani, M. Effects of climate change over energy production in La Plata Basin. Int. J. River Basin Manag. 12, 319–327 (2014).

    Article  Google Scholar 

  46. 46.

    de Jong, P. et al. Estimating the impact of climate change on wind and solar energy in Brazil using a South American regional climate model. Renew. Energy 141, 390–401 (2019).

    Article  Google Scholar 

  47. 47.

    Pereira de Lucena, A. F., Szklo, A. S., Schaeffer, R. & Dutra, R. M. The vulnerability of wind power to climate change in Brazil. Renew. Energy 35, 904–912 (2010).

    Article  Google Scholar 

  48. 48.

    Pereira, E. B., Martins, F. R., Pes, M. P., da Cruz Segundo, E. I. & Lyra, Ad. A. The impacts of global climate changes on the wind power density in Brazil. Renew. Energy 49, 107–110 (2013).

    Article  Google Scholar 

  49. 49.

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  50. 50.

    Frieler, K. et al. Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).

    ADS  Article  Google Scholar 

  51. 51.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Vol. Ch. 6 (eds O. Edenhofer et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014).

  52. 52.

    Iyer, G. C. et al. Improved representation of investment decisions in assessments of CO2 mitigation. Nat. Clim. Change 5, 436–440 (2015).

    ADS  CAS  Article  Google Scholar 

  53. 53.

    Carvajal, P. E., Anandarajah, G., Mulugetta, Y. & Dessens, O. Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensemble—the case of Ecuador. Climatic Change 144, 611–624 (2017).

    ADS  Article  Google Scholar 

  54. 54.

    Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Change 19, 240–247 (2009).

    Article  Google Scholar 

  55. 55.

    Ebinger, J. & Vergara, W. Climate Impacts on Energy Systems: Key Issues for Energy Sector Adaptation. (The World Bank, Washington, DC, 2011).

  56. 56.

    Miara, A. et al. Climate-Water Adaptation for Future US Electricity Infrastructure. Environ. Sci. Technol. 53, 14029–14040 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  57. 57.

    Kundzewicz, Z. W. et al. Uncertainty in climate change impacts on water resources. Environ. Sci. Policy 79, 1–8 (2018).

    Article  Google Scholar 

  58. 58.

    Calvin, K. V., Beach, R., Gurgel, A., Labriet, M. & Loboguerrero Rodriguez, A. M. Agriculture, forestry, and other land-use emissions in Latin America. Energy Econ. 56, 615–624 (2016).

    Article  Google Scholar 

  59. 59.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268 (2014).

    ADS  CAS  Article  Google Scholar 

  60. 60.

    van Vliet, M. T. H. et al. Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Glob. Environ. Change 40, 156–170 (2016).

    Article  Google Scholar 

  61. 61.

    Wise, M. et al. Representing power sector detail and flexibility in a multi-sector model. Energy Strategy Rev. 26, 100411 (2019).

    Article  Google Scholar 

  62. 62.

    Pietzcker, R. C. et al. System integration of wind and solar power in integrated assessment models: a cross-model evaluation of new approaches. Energy Econ. 64, 583–599 (2017).

    Article  Google Scholar 

  63. 63.

    JGCRI. GCAM v5.1 Documentation, <http://jgcri.github.io/gcam-doc/v5.1/toc.html> (2019).

  64. 64.

    Hartin, C. A., Patel, P., Schwarber, A., Link, R. P. & Bond-Lamberty, B. P. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0. Geosci. Model Dev. 8, 939–955 (2015).

    ADS  Article  Google Scholar 

  65. 65.

    Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).

    Article  Google Scholar 

  66. 66.

    Elliott, J. et al. The parallel system for integrating impact models and sectors (pSIMS). Environ. Model. Softw. 62, 509–516 (2014).

    Article  Google Scholar 

  67. 67.

    Vernon, C. R. et al. A global hydrologic framework to accelerate scientific discovery. J. Open Res. Software 7, https://doi.org/10.5334/jors.245 (2019).

  68. 68.

    Zhou, Y., Luckow, P., Smith, S. J. & Clarke, L. Evaluation of global onshore wind energy potential and generation costs. Environ. Sci. Technol. 46, 7857–7864 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  69. 69.

    Denholm, P. & Margolis, R. Supply Curves for Rooftop Solar PV-Generated Electricity for the United States. Report No. NREL/TP-6A0-44073, (Golden, CO, 2008).

  70. 70.

    Muratori, M. et al. Cost of power or power of cost: A U.S. modeling perspective. Renew. Sustain. Energy Rev. 77, 861–874 (2017).

    Article  Google Scholar 

  71. 71.

    Clarke, L. et al. Effects of long-term climate change on global building energy expenditures. Energy Econ. 72, 667–677 (2018).

    Article  Google Scholar 

  72. 72.

    Bartos, M. D. & Chester, M. V. Impacts of climate change on electric power supply in the Western United States. Nat. Clim. Change 5, 748–752 (2015).

    ADS  Article  Google Scholar 

  73. 73.

    van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6, 375 (2016).

    ADS  Article  Google Scholar 

Original Text (This is the original text for your reference.)

  1. 1.

    Federative Republic of Brazil. Intended Nationally Determined Contribution towards achieving the objective of the United Nations Framework Convention on Climate Change, <https://www4.unfccc.int/sites/submissions/INDC/Published%20Documents/Brazil/1/BRAZIL%20iNDC%20english%20FINAL.pdf> (2015).

  2. 2.

    India. India’s Intended Nationally Determined Contribution: working towards climate justice, <https://www4.unfccc.int/sites/submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf> (2015).

  3. 3.

    SEMARNAT-INECC. Mexico’s Climate Change Mid-Century Strategy, <https://unfccc.int/files/focus/long-term_strategies/application/pdf/mexico_mcs_final_cop22nov16_red.pdf> (2016).

  4. 4.

    IPCC. Special Report on Renewable Energy Sources and Climate Change Mitigation. (Cambridge University Press, New York, NY, 2012).

  5. 5.

    Schaeffer, R. et al. Energy sector vulnerability to climate change: a review. Energy 38, 1–12 (2012).

    Article  Google Scholar 

  6. 6.

    Jerez, S. et al. The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 6, 10014 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Crook, J. A., Jones, L. A., Forster, P. M. & Crook, R. Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy Environ. Sci. 4, 3101–3109 (2011).

    Article  Google Scholar 

  8. 8.

    Wild, M., Folini, D., Henschel, F., Fischer, N. & Müller, B. Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Sol. Energy 116, 12–24 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    Wild, M., Folini, D. & Henschel, F. Impact of climate change on future concentrated solar power (CSP) production. AIP Conf. Proc. 1810, 100007 (2017).

    Article  Google Scholar 

  10. 10.

    Eurek, K. et al. An improved global wind resource estimate for integrated assessment models. Energy Econ. 64, 552–567 (2017).

    Article  Google Scholar 

  11. 11.

    Karnauskas, K. B., Lundquist, J. K. & Zhang, L. Southward shift of the global wind energy resource under high carbon dioxide emissions. Nat. Geosci. 11, 38–43 (2018).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    IPCC. Climate Change 2014: Synthesis Report. (IPCC, Geneva, Switzerland, 2014).

  13. 13.

    Iyer, G. et al. Measuring progress from nationally determined contributions to mid-century strategies. Nat. Clim. Change 7, 871–874 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Yalew, S. G. et al. Impacts of climate change on energy systems in global and regional scenarios. Nature Energy, https://doi.org/10.1038/s41560-020-0664-z (2020).

  15. 15.

    Solaun, K. & Cerdá, E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renew. Sustain. Energy Rev. 116, 109415 (2019).

    Article  Google Scholar 

  16. 16.

    Cronin, J., Anandarajah, G. & Dessens, O. Climate change impacts on the energy system: a review of trends and gaps. Climatic Change 151, 79–93 (2018).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Emodi, N. V., Chaiechi, T. & Beg, A. B. M. R. A. The impact of climate variability and change on the energy system: a systematic scoping review. Sci. Total Environ. 676, 545–563 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  18. 18.

    Arango-Aramburo, S. et al. Climate impacts on hydropower in Colombia: a multi-model assessment of power sector adaptation pathways. Energy Policy 128, 179–188 (2019).

    Article  Google Scholar 

  19. 19.

    Lucena, A. F. P. et al. Interactions between climate change mitigation and adaptation: the case of hydropower in Brazil. Energy 164, 1161–1177 (2018).

    Article  Google Scholar 

  20. 20.

    Turner, S. W. D., Hejazi, M., Kim, S. H., Clarke, L. & Edmonds, J. Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy 141, 2081–2090 (2017).

    Article  Google Scholar 

  21. 21.

    Carvajal, P. E. et al. Large hydropower, decarbonisation and climate change uncertainty: modelling power sector pathways for Ecuador. Energy Strategy Rev. 23, 86–99 (2019).

    Article  Google Scholar 

  22. 22.

    Zhou, Q., Hanasaki, N., Fujimori, S., Masaki, Y. & Hijioka, Y. Economic consequences of global climate change and mitigation on future hydropower generation. Climatic Change 147, 77–90 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    Savelsberg, J., Schillinger, M., Schlecht, I. & Weigt, H. The impact of climate change on swiss hydropower. Sustainability 10, https://doi.org/10.3390/su10072541 (2018).

  24. 24.

    Dowling, P. The impact of climate change on the European energy system. Energy Policy 60, 406–417 (2013).

    Article  Google Scholar 

  25. 25.

    Kyle, P., Müller, C., Calvin, K. & Thomson, A. Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts. Earth’s Future 2, 83–98 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Nelson, G. C. et al. Climate change effects on agriculture: economic responses to biophysical shocks. Proc. Natl Acad. Sci. USA 111, 3274 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  27. 27.

    Ren, X. et al. Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS). Climatic Change 146, 517–531 (2018).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Snyder, A., Calvin, K. V., Phillips, M. & Ruane, A. C. A crop yield change emulator for use in GCAM and similar models: Persephone v1.0. Geosci. Model Dev. 12, 1319–1350 (2019).

    ADS  Article  Google Scholar 

  29. 29.

    Gernaat, D. E. H. J. et al. Climate change impacts on renewable energy supply. Nature Climate Change 11, 119–125 (2021).

  30. 30.

    Calvin, K. et al. GCAM v5. 1: representing the linkages between energy, water, land, climate, and economic systems. Geoscientific Model Dev. 12, 677–698 (2019).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    EIA. Independent Statistics & Analysis, <https://www.eia.gov/international/data/world> (2019).

  32. 32.

    IRENA. Renewable Energy Statistics 2018. 1 –348 (International Renewable Energy Agency, 2018).

  33. 33.

    IRENA. Renewable Energy Market Analysis: Latin America. (International Renewable Energy Agency Abu Dhabi, 2016).

  34. 34.

    IEA. Data and statistics, <https://www.iea.org/data-and-statistics> (2019).

  35. 35.

    van Ruijven, B. J. et al. Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions. Energy Econ. 56, 499–512 (2016).

    Article  Google Scholar 

  36. 36.

    Binsted, M. et al. Stranded asset implications of the Paris Agreement in Latin America and the Caribbean. Environ. Res. Lett. 15, 044026 (2020).

    ADS  Article  Google Scholar 

  37. 37.

    Santos Da Silva, S. R. et al. The Paris pledges and the energy-water-land nexus in Latin America: exploring implications of greenhouse gas emission reductions. PLOS ONE 14, e0215013 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    van der Zwaan, B. et al. Energy technology roll-out for climate change mitigation: a multi-model study for Latin America. Energy Econ. 56, 526–542 (2016).

    Article  Google Scholar 

  39. 39.

    Kober, T. et al. A multi-model study of energy supply investments in Latin America under climate control policy. Energy Econ. 56, 543–551 (2016).

    Article  Google Scholar 

  40. 40.

    Lucena, A. F. P. et al. Climate policy scenarios in Brazil: a multi-model comparison for energy. Energy Econ. 56, 564–574 (2016).

    Article  Google Scholar 

  41. 41.

    Calderón, S. et al. Achieving CO2 reductions in Colombia: effects of carbon taxes and abatement targets. Energy Econ. 56, 575–586 (2016).

    Article  Google Scholar 

  42. 42.

    Magrin, G. O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds V. R. Barros et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014).

  43. 43.

    Ruffato-Ferreira, V. et al. A foundation for the strategic long-term planning of the renewable energy sector in Brazil: Hydroelectricity and wind energy in the face of climate change scenarios. Renew. Sustain. Energy Rev. 72, 1124–1137 (2017).

    Article  Google Scholar 

  44. 44.

    Zarrar, K. et al. Integrated energy-water-land nexus planning to guide national policy: an example from Uruguay. Environ. Res. Lett. 15, 094014 (2020).

  45. 45.

    Popescu, I., Brandimarte, L. & Peviani, M. Effects of climate change over energy production in La Plata Basin. Int. J. River Basin Manag. 12, 319–327 (2014).

    Article  Google Scholar 

  46. 46.

    de Jong, P. et al. Estimating the impact of climate change on wind and solar energy in Brazil using a South American regional climate model. Renew. Energy 141, 390–401 (2019).

    Article  Google Scholar 

  47. 47.

    Pereira de Lucena, A. F., Szklo, A. S., Schaeffer, R. & Dutra, R. M. The vulnerability of wind power to climate change in Brazil. Renew. Energy 35, 904–912 (2010).

    Article  Google Scholar 

  48. 48.

    Pereira, E. B., Martins, F. R., Pes, M. P., da Cruz Segundo, E. I. & Lyra, Ad. A. The impacts of global climate changes on the wind power density in Brazil. Renew. Energy 49, 107–110 (2013).

    Article  Google Scholar 

  49. 49.

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  50. 50.

    Frieler, K. et al. Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).

    ADS  Article  Google Scholar 

  51. 51.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Vol. Ch. 6 (eds O. Edenhofer et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014).

  52. 52.

    Iyer, G. C. et al. Improved representation of investment decisions in assessments of CO2 mitigation. Nat. Clim. Change 5, 436–440 (2015).

    ADS  CAS  Article  Google Scholar 

  53. 53.

    Carvajal, P. E., Anandarajah, G., Mulugetta, Y. & Dessens, O. Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensemble—the case of Ecuador. Climatic Change 144, 611–624 (2017).

    ADS  Article  Google Scholar 

  54. 54.

    Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Change 19, 240–247 (2009).

    Article  Google Scholar 

  55. 55.

    Ebinger, J. & Vergara, W. Climate Impacts on Energy Systems: Key Issues for Energy Sector Adaptation. (The World Bank, Washington, DC, 2011).

  56. 56.

    Miara, A. et al. Climate-Water Adaptation for Future US Electricity Infrastructure. Environ. Sci. Technol. 53, 14029–14040 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  57. 57.

    Kundzewicz, Z. W. et al. Uncertainty in climate change impacts on water resources. Environ. Sci. Policy 79, 1–8 (2018).

    Article  Google Scholar 

  58. 58.

    Calvin, K. V., Beach, R., Gurgel, A., Labriet, M. & Loboguerrero Rodriguez, A. M. Agriculture, forestry, and other land-use emissions in Latin America. Energy Econ. 56, 615–624 (2016).

    Article  Google Scholar 

  59. 59.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268 (2014).

    ADS  CAS  Article  Google Scholar 

  60. 60.

    van Vliet, M. T. H. et al. Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Glob. Environ. Change 40, 156–170 (2016).

    Article  Google Scholar 

  61. 61.

    Wise, M. et al. Representing power sector detail and flexibility in a multi-sector model. Energy Strategy Rev. 26, 100411 (2019).

    Article  Google Scholar 

  62. 62.

    Pietzcker, R. C. et al. System integration of wind and solar power in integrated assessment models: a cross-model evaluation of new approaches. Energy Econ. 64, 583–599 (2017).

    Article  Google Scholar 

  63. 63.

    JGCRI. GCAM v5.1 Documentation, <http://jgcri.github.io/gcam-doc/v5.1/toc.html> (2019).

  64. 64.

    Hartin, C. A., Patel, P., Schwarber, A., Link, R. P. & Bond-Lamberty, B. P. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0. Geosci. Model Dev. 8, 939–955 (2015).

    ADS  Article  Google Scholar 

  65. 65.

    Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).

    Article  Google Scholar 

  66. 66.

    Elliott, J. et al. The parallel system for integrating impact models and sectors (pSIMS). Environ. Model. Softw. 62, 509–516 (2014).

    Article  Google Scholar 

  67. 67.

    Vernon, C. R. et al. A global hydrologic framework to accelerate scientific discovery. J. Open Res. Software 7, https://doi.org/10.5334/jors.245 (2019).

  68. 68.

    Zhou, Y., Luckow, P., Smith, S. J. & Clarke, L. Evaluation of global onshore wind energy potential and generation costs. Environ. Sci. Technol. 46, 7857–7864 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  69. 69.

    Denholm, P. & Margolis, R. Supply Curves for Rooftop Solar PV-Generated Electricity for the United States. Report No. NREL/TP-6A0-44073, (Golden, CO, 2008).

  70. 70.

    Muratori, M. et al. Cost of power or power of cost: A U.S. modeling perspective. Renew. Sustain. Energy Rev. 77, 861–874 (2017).

    Article  Google Scholar 

  71. 71.

    Clarke, L. et al. Effects of long-term climate change on global building energy expenditures. Energy Econ. 72, 667–677 (2018).

    Article  Google Scholar 

  72. 72.

    Bartos, M. D. & Chester, M. V. Impacts of climate change on electric power supply in the Western United States. Nat. Clim. Change 5, 748–752 (2015).

    ADS  Article  Google Scholar 

  73. 73.

    van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6, 375 (2016).

    ADS  Article  Google Scholar 

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel