- 1.
Comiso, J. C., Meier, W. N. & Gersten, R. Variability and trends in the Arctic Sea ice cover: results from different techniques. J. Geophys. Res. 122, 6883–6900 (2017).
- 2.
Stroeve, J. C. et al. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim. Change 110, 1005–1027 (2012).
- 3.
Kinnard, C. et al. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479, 509 (2011).
- 4.
Stroeve, J. C. et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39 (2012).
- 5.
Community, S. Arctic Sea Ice in CMIP6. Geophys. Res. Lett. 47, e2019GL086749 (2020).
- 6.
Serreze, M. C., Holland, M. M. & Stroeve, J. Perspectives on the Arctic’s shrinking sea-ice cover. Science 315, 1533–1536 (2007).
- 7.
Screen, J. A., Simmonds, I. & Keay, K. Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J. Geophys. Res. 116 (2011).
- 8.
Overland, J. E. & Wang, M. When will the summer Arctic be nearly sea ice free? Geophys. Res. Lett. 40, 2097–2101 (2013).
- 9.
Comiso, J. C. Large decadal decline of the Arctic multiyear ice cover. J. Clim. 25, 1176–1193 (2012).
- 10.
Ding, Q. et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Clim. Change 7, 289 (2017).
- 11.
Giles, K. A., Laxon, S. W., Ridout, A. L., Wingham, D. J. & Bacon, S. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat. Geosci. 5, 194 (2012).
- 12.
Ouyang, Z. et al. Sea-ice loss amplifies summertime decadal CO 2 increase in the western Arctic Ocean. Nat. Clim. Change 10, 678–684 (2020).
- 13.
Qi, D. et al. Increase in acidifying water in the western Arctic Ocean. Nat. Clim. Change 7, 195 (2017).
- 14.
Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408–1408 (2012).
- 15.
Francis, J. A., Chan, W., Leathers, D. J., Miller, J. R. & Veron, D. E. Winter Northern Hemisphere weather patterns remember summer Arctic sea‐ice extent. Geophys. Res. Lett. 36, L07503 (2009).
- 16.
Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid‐latitudes. Geophys. Res. Lett. 39, L06801 (2012).
- 17.
Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572 (2017).
- 18.
Kay, J. E., Holland, M. M. & Jahn, A. Inter‐annual to multi‐decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett. 38 (2011).
- 19.
Zhang, R. Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc. Natl Acad. Sci. USA 112, 4570–4575 (2015).
- 20.
Ding, Q. et al. Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. Nat. Geosci. 12, 28–33 (2019).
- 21.
Zhang, S., Gan, T. Y. & Bush, A. B. Variability of arctic sea ice based on quantile regression and the teleconnection with large-scale climate patterns. J. Clim. 33, 4009–4025 (2020).
- 22.
Deser, C. & Teng, H. Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007. Geophys. Res. Lett. 35, L02504 (2008).
- 23.
Overland, J. E. & Wang, M. Large‐scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62, 1–9 (2010).
- 24.
Wernli, H. & Papritz, L. Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting. Nat. Geosci. 11, 108 (2018).
- 25.
Ding, Q. et al. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509, 209–212 (2014).
- 26.
Topál, D. et al. An internal atmospheric process determining summertime Arctic sea ice melting in the next three decades: lessons learned from five large ensembles and multiple CMIP5 climate simulations. J. Clim. 33, 7431–7454 (2020).
- 27.
Baxter, I. et al. How tropical Pacific surface cooling contributed to accelerated sea ice melt from 2007 to 2012 as ice is thinned by anthropogenic forcing. J. Clim. 32, 8583–8602 (2019).
- 28.
Hu, C. et al. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin. Nat. Commun. 7, 1–9 (2016).
- 29.
Matsumura, S. & Kosaka, Y. Arctic–Eurasian climate linkage induced by tropical ocean variability. Nat. Commun. 10, 1–8 (2019).
- 30.
Bonan, D. B. & Blanchard-Wrigglesworth, E. Nonstationary teleconnection between the Pacific Ocean and Arctic Sea Ice. Geophys. Res. Lett. 47, e2019GL085666 (2020).
- 31.
Meehl, G. A., Chung, C. T., Arblaster, J. M., Holland, M. M. & Bitz, C. M. Tropical decadal variability and the rate of Arctic sea ice decrease. Geophys. Res. Lett. 45, 326–311,333 (2018).
- 32.
McCrystall, M. R., Hosking, J. S., White, I. P. & Maycock, A. C. The impact of changes in tropical sea surface temperatures over 1979–2012 on Northern hemisphere high-latitude climate. J. Clim. 33, 5103–5121 (2020).
- 33.
Screen, J. & Deser, C. Pacific Ocean variability influences the time of emergence of a seasonally ice‐free Arctic Ocean. Geophys. Res. Lett. 46, 2222–2231 (2019).
- 34.
Castruccio, F. S. et al. Modulation of Arctic Sea ice loss by atmospheric teleconnections from Atlantic multidecadal variability. J. Clim. 32, 1419–1441 (2019).
- 35.
Tokinaga, H., Xie, S.-P. & Mukougawa, H. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl Acad. Sci. USA 114, 6227–6232 (2017).
- 36.
L’Heureux, M. L., Kumar, A., Bell, G. D., Halpert, M. S. & Higgins, R. W. Role of the Pacific‐North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys. Res. Lett. 35, L20701 (2008).
- 37.
Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather. Rev. 109, 784–812 (1981).
- 38.
Kay, J. E., L’Ecuyer, T., Gettelman, A., Stephens, G. & O’Dell, C. The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett. 35, L08503 (2008).
- 39.
Miles, M. W. et al. A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophys. Res. Lett. 41, 463–469 (2014).
- 40.
Kopec, B. G., Feng, X., Michel, F. A. & Posmentier, E. S. Influence of sea ice on Arctic precipitation. Proc. Natl Acad. Sci. USA 113, 46–51 (2016).
- 41.
Francis, J. A. & Hunter, E. New insight into the disappearing Arctic sea ice. EOS Trans. Am. Geophys. Union 87, 509–511 (2006).
- 42.
Francis, J. A., Hunter, E., Key, J. R. & Wang, X. Clues to variability in Arctic minimum sea ice extent. Geophys. Res. Lett. 32, L21501 (2005).
- 43.
Kapsch, M.-L., Graversen, R. G., Tjernström, M. & Bintanja, R. The effect of downwelling longwave and shortwave radiation on Arctic summer sea ice. J. Clim. 29, 1143–1159 (2016).
- 44.
Krikken, F. & Hazeleger, W. Arctic energy budget in relation to sea ice variability on monthly-to-annual time scales. J. Clim. 28, 6335–6350 (2015).
- 45.
Liu, Z. et al. Recent contrasting winter temperature changes over North America linked to enhanced positive Pacific North American pattern. Geophys. Res. Lett. 42, 7750–7757 (2015).
- 46.
Leathers, D. J. & Palecki, M. A. The Pacific/North American teleconnection pattern and United States climate. Part II: temporal characteristics and index specification. J. Clim. 5, 707–716 (1992).
- 47.
Liu, Z. et al. Pacific North American circulation pattern links external forcing and North American hydroclimatic change over the past millennium. Proc. Natl Acad. Sci. USA 114, 3340–3345 (2017).
- 48.
Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).
- 49.
Codron, F. Ekman heat transport for slab oceans. Clim. Dyn. 38, 379–389 (2012).
- 50.
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
- 51.
Blackport, R., Screen, J. A., van der Wiel, K. & Bintanja, R. Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Clim. Change 9, 697–704 (2019).
- 52.
Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334 (2010).
- 53.
Ogi, M., Yamazaki, K. & Wallace, J. M. Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent. Geophys. Res. Lett. 37, L07701 (2010).
- 54.
Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).
- 55.
Olonscheck, D., Mauritsen, T. & Notz, D. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nat. Geosci. 12, 430 (2019).
- 56.
Deser, C., Tomas, R., Alexander, M. & Lawrence, D. The seasonal atmospheric response to projected arctic sea ice loss in the late twenty-first century. J. Clim. 23, 333–351 (2010).
- 57.
Corti, S., Molteni, F. & Palmer, T. Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398, 799–802 (1999).
- 58.
Liu, Z., He, X., Ma, W. & Wang, Y. Robust increases in extreme Pacific North American events under greenhouse warming. Geophys. Res. Lett. 47, e2019GL086309 (2020).
- 59.
Horel, J. D. & Wallace, J. M. Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Weather Rev. 109, 813–829 (1981).
- 60.
Zhang, R. & Delworth, T. L. Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett. 34, L23708 (2007).
- 61.
Hubeny, J. B., King, J. W. & Reddin, M. Northeast US precipitation variability and North American climate teleconnections interpreted from late Holocene varved sediments. Proc. Natl Acad. Sci. USA 108, 17895–17900 (2011).
- 62.
Meier, W. et al. NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 2. Natl Snow Ice Data Cent. 10, N55M63M51 (2013).
- 63.
Dee, D. et al. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).
- 64.
Hourdin, F. et al. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn. 27, 787–813 (2006).
- 65.
Gates, W. L. An AMS continuing series: global change–AMIP: the atmospheric model intercomparison project. Bull. Am. Meteorol. Soc. 73, 1962–1970 (1992).
- 66.
Uppala, S. M. et al. The ERA‐40 re‐analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005).
- 67.
Risi, C., Bony, S., Vimeux, F. & Jouzel, J. Water‐stable isotopes in the LMDZ4 general circulation model: Model evaluation for present‐day and past climates and applications to climatic interpretations of tropical isotopic records. J. Geophys. Res. 115, D12118 (2010).
- 68.
Barnston, A. & Livezey, R. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather. Rev. 115, 1083–1126 (1987).
- 69.
Stoner, A. M. K., Hayhoe, K. & Wuebbles, D. J. Assessing general circulation model simulations of atmospheric teleconnection patterns. J. Clim. 22, 4348–4372 (2009).
Comments
Something to say?
Log in or Sign up for free