Welcome to the IKCEST
Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern
  1. 1.

    Comiso, J. C., Meier, W. N. & Gersten, R. Variability and trends in the Arctic Sea ice cover: results from different techniques. J. Geophys. Res. 122, 6883–6900 (2017).

    ADS  Article  Google Scholar 

  2. 2.

    Stroeve, J. C. et al. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim. Change 110, 1005–1027 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    Kinnard, C. et al. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479, 509 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Stroeve, J. C. et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39 (2012).

  5. 5.

    Community, S. Arctic Sea Ice in CMIP6. Geophys. Res. Lett. 47, e2019GL086749 (2020).

    ADS  Google Scholar 

  6. 6.

    Serreze, M. C., Holland, M. M. & Stroeve, J. Perspectives on the Arctic’s shrinking sea-ice cover. Science 315, 1533–1536 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Screen, J. A., Simmonds, I. & Keay, K. Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J. Geophys. Res. 116 (2011).

  8. 8.

    Overland, J. E. & Wang, M. When will the summer Arctic be nearly sea ice free? Geophys. Res. Lett. 40, 2097–2101 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Comiso, J. C. Large decadal decline of the Arctic multiyear ice cover. J. Clim. 25, 1176–1193 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Ding, Q. et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Clim. Change 7, 289 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Giles, K. A., Laxon, S. W., Ridout, A. L., Wingham, D. J. & Bacon, S. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat. Geosci. 5, 194 (2012).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Ouyang, Z. et al. Sea-ice loss amplifies summertime decadal CO 2 increase in the western Arctic Ocean. Nat. Clim. Change 10, 678–684 (2020).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Qi, D. et al. Increase in acidifying water in the western Arctic Ocean. Nat. Clim. Change 7, 195 (2017).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408–1408 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Francis, J. A., Chan, W., Leathers, D. J., Miller, J. R. & Veron, D. E. Winter Northern Hemisphere weather patterns remember summer Arctic sea‐ice extent. Geophys. Res. Lett. 36, L07503 (2009).

    ADS  Article  Google Scholar 

  16. 16.

    Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid‐latitudes. Geophys. Res. Lett. 39, L06801 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572 (2017).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Kay, J. E., Holland, M. M. & Jahn, A. Inter‐annual to multi‐decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett. 38 (2011).

  19. 19.

    Zhang, R. Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc. Natl Acad. Sci. USA 112, 4570–4575 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Ding, Q. et al. Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. Nat. Geosci. 12, 28–33 (2019).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Zhang, S., Gan, T. Y. & Bush, A. B. Variability of arctic sea ice based on quantile regression and the teleconnection with large-scale climate patterns. J. Clim. 33, 4009–4025 (2020).

    ADS  Article  Google Scholar 

  22. 22.

    Deser, C. & Teng, H. Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007. Geophys. Res. Lett. 35, L02504 (2008).

    ADS  Article  Google Scholar 

  23. 23.

    Overland, J. E. & Wang, M. Large‐scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62, 1–9 (2010).

    ADS  Article  Google Scholar 

  24. 24.

    Wernli, H. & Papritz, L. Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting. Nat. Geosci. 11, 108 (2018).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Ding, Q. et al. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509, 209–212 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Topál, D. et al. An internal atmospheric process determining summertime Arctic sea ice melting in the next three decades: lessons learned from five large ensembles and multiple CMIP5 climate simulations. J. Clim. 33, 7431–7454 (2020).

    ADS  Article  Google Scholar 

  27. 27.

    Baxter, I. et al. How tropical Pacific surface cooling contributed to accelerated sea ice melt from 2007 to 2012 as ice is thinned by anthropogenic forcing. J. Clim. 32, 8583–8602 (2019).

    ADS  Article  Google Scholar 

  28. 28.

    Hu, C. et al. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin. Nat. Commun. 7, 1–9 (2016).

    ADS  CAS  Google Scholar 

  29. 29.

    Matsumura, S. & Kosaka, Y. Arctic–Eurasian climate linkage induced by tropical ocean variability. Nat. Commun. 10, 1–8 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Bonan, D. B. & Blanchard-Wrigglesworth, E. Nonstationary teleconnection between the Pacific Ocean and Arctic Sea Ice. Geophys. Res. Lett. 47, e2019GL085666 (2020).

    ADS  Article  Google Scholar 

  31. 31.

    Meehl, G. A., Chung, C. T., Arblaster, J. M., Holland, M. M. & Bitz, C. M. Tropical decadal variability and the rate of Arctic sea ice decrease. Geophys. Res. Lett. 45, 326–311,333 (2018).

    Article  Google Scholar 

  32. 32.

    McCrystall, M. R., Hosking, J. S., White, I. P. & Maycock, A. C. The impact of changes in tropical sea surface temperatures over 1979–2012 on Northern hemisphere high-latitude climate. J. Clim. 33, 5103–5121 (2020).

    ADS  Article  Google Scholar 

  33. 33.

    Screen, J. & Deser, C. Pacific Ocean variability influences the time of emergence of a seasonally ice‐free Arctic Ocean. Geophys. Res. Lett. 46, 2222–2231 (2019).

    ADS  Article  Google Scholar 

  34. 34.

    Castruccio, F. S. et al. Modulation of Arctic Sea ice loss by atmospheric teleconnections from Atlantic multidecadal variability. J. Clim. 32, 1419–1441 (2019).

    ADS  Article  Google Scholar 

  35. 35.

    Tokinaga, H., Xie, S.-P. & Mukougawa, H. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl Acad. Sci. USA 114, 6227–6232 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    L’Heureux, M. L., Kumar, A., Bell, G. D., Halpert, M. S. & Higgins, R. W. Role of the Pacific‐North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys. Res. Lett. 35, L20701 (2008).

    ADS  Article  CAS  Google Scholar 

  37. 37.

    Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather. Rev. 109, 784–812 (1981).

    ADS  Article  Google Scholar 

  38. 38.

    Kay, J. E., L’Ecuyer, T., Gettelman, A., Stephens, G. & O’Dell, C. The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett. 35, L08503 (2008).

    ADS  Article  Google Scholar 

  39. 39.

    Miles, M. W. et al. A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophys. Res. Lett. 41, 463–469 (2014).

    ADS  Article  Google Scholar 

  40. 40.

    Kopec, B. G., Feng, X., Michel, F. A. & Posmentier, E. S. Influence of sea ice on Arctic precipitation. Proc. Natl Acad. Sci. USA 113, 46–51 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Francis, J. A. & Hunter, E. New insight into the disappearing Arctic sea ice. EOS Trans. Am. Geophys. Union 87, 509–511 (2006).

    ADS  Article  Google Scholar 

  42. 42.

    Francis, J. A., Hunter, E., Key, J. R. & Wang, X. Clues to variability in Arctic minimum sea ice extent. Geophys. Res. Lett. 32, L21501 (2005).

    ADS  Article  Google Scholar 

  43. 43.

    Kapsch, M.-L., Graversen, R. G., Tjernström, M. & Bintanja, R. The effect of downwelling longwave and shortwave radiation on Arctic summer sea ice. J. Clim. 29, 1143–1159 (2016).

    ADS  Article  Google Scholar 

  44. 44.

    Krikken, F. & Hazeleger, W. Arctic energy budget in relation to sea ice variability on monthly-to-annual time scales. J. Clim. 28, 6335–6350 (2015).

    ADS  Article  Google Scholar 

  45. 45.

    Liu, Z. et al. Recent contrasting winter temperature changes over North America linked to enhanced positive Pacific North American pattern. Geophys. Res. Lett. 42, 7750–7757 (2015).

    ADS  Article  Google Scholar 

  46. 46.

    Leathers, D. J. & Palecki, M. A. The Pacific/North American teleconnection pattern and United States climate. Part II: temporal characteristics and index specification. J. Clim. 5, 707–716 (1992).

    ADS  Article  Google Scholar 

  47. 47.

    Liu, Z. et al. Pacific North American circulation pattern links external forcing and North American hydroclimatic change over the past millennium. Proc. Natl Acad. Sci. USA 114, 3340–3345 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).

    Article  Google Scholar 

  49. 49.

    Codron, F. Ekman heat transport for slab oceans. Clim. Dyn. 38, 379–389 (2012).

    Article  Google Scholar 

  50. 50.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    ADS  Article  Google Scholar 

  51. 51.

    Blackport, R., Screen, J. A., van der Wiel, K. & Bintanja, R. Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Clim. Change 9, 697–704 (2019).

    ADS  Article  Google Scholar 

  52. 52.

    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Ogi, M., Yamazaki, K. & Wallace, J. M. Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent. Geophys. Res. Lett. 37, L07701 (2010).

    ADS  Article  Google Scholar 

  54. 54.

    Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Olonscheck, D., Mauritsen, T. & Notz, D. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nat. Geosci. 12, 430 (2019).

    ADS  CAS  Article  Google Scholar 

  56. 56.

    Deser, C., Tomas, R., Alexander, M. & Lawrence, D. The seasonal atmospheric response to projected arctic sea ice loss in the late twenty-first century. J. Clim. 23, 333–351 (2010).

    ADS  Article  Google Scholar 

  57. 57.

    Corti, S., Molteni, F. & Palmer, T. Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398, 799–802 (1999).

    ADS  CAS  Article  Google Scholar 

  58. 58.

    Liu, Z., He, X., Ma, W. & Wang, Y. Robust increases in extreme Pacific North American events under greenhouse warming. Geophys. Res. Lett. 47, e2019GL086309 (2020).

    ADS  Google Scholar 

  59. 59.

    Horel, J. D. & Wallace, J. M. Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Weather Rev. 109, 813–829 (1981).

    ADS  Article  Google Scholar 

  60. 60.

    Zhang, R. & Delworth, T. L. Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett. 34, L23708 (2007).

    ADS  Google Scholar 

  61. 61.

    Hubeny, J. B., King, J. W. & Reddin, M. Northeast US precipitation variability and North American climate teleconnections interpreted from late Holocene varved sediments. Proc. Natl Acad. Sci. USA 108, 17895–17900 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Meier, W. et al. NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 2. Natl Snow Ice Data Cent. 10, N55M63M51 (2013).

    Google Scholar 

  63. 63.

    Dee, D. et al. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    ADS  Article  Google Scholar 

  64. 64.

    Hourdin, F. et al. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn. 27, 787–813 (2006).

    Article  Google Scholar 

  65. 65.

    Gates, W. L. An AMS continuing series: global change–AMIP: the atmospheric model intercomparison project. Bull. Am. Meteorol. Soc. 73, 1962–1970 (1992).

    ADS  Article  Google Scholar 

  66. 66.

    Uppala, S. M. et al. The ERA‐40 re‐analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005).

    ADS  Article  Google Scholar 

  67. 67.

    Risi, C., Bony, S., Vimeux, F. & Jouzel, J. Water‐stable isotopes in the LMDZ4 general circulation model: Model evaluation for present‐day and past climates and applications to climatic interpretations of tropical isotopic records. J. Geophys. Res. 115, D12118 (2010).

    ADS  Article  CAS  Google Scholar 

  68. 68.

    Barnston, A. & Livezey, R. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather. Rev. 115, 1083–1126 (1987).

    ADS  Article  Google Scholar 

  69. 69.

    Stoner, A. M. K., Hayhoe, K. & Wuebbles, D. J. Assessing general circulation model simulations of atmospheric teleconnection patterns. J. Clim. 22, 4348–4372 (2009).

    ADS  Article  Google Scholar 

Original Text (This is the original text for your reference.)

  1. 1.

    Comiso, J. C., Meier, W. N. & Gersten, R. Variability and trends in the Arctic Sea ice cover: results from different techniques. J. Geophys. Res. 122, 6883–6900 (2017).

    ADS  Article  Google Scholar 

  2. 2.

    Stroeve, J. C. et al. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim. Change 110, 1005–1027 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    Kinnard, C. et al. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479, 509 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Stroeve, J. C. et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39 (2012).

  5. 5.

    Community, S. Arctic Sea Ice in CMIP6. Geophys. Res. Lett. 47, e2019GL086749 (2020).

    ADS  Google Scholar 

  6. 6.

    Serreze, M. C., Holland, M. M. & Stroeve, J. Perspectives on the Arctic’s shrinking sea-ice cover. Science 315, 1533–1536 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Screen, J. A., Simmonds, I. & Keay, K. Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J. Geophys. Res. 116 (2011).

  8. 8.

    Overland, J. E. & Wang, M. When will the summer Arctic be nearly sea ice free? Geophys. Res. Lett. 40, 2097–2101 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Comiso, J. C. Large decadal decline of the Arctic multiyear ice cover. J. Clim. 25, 1176–1193 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Ding, Q. et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Clim. Change 7, 289 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Giles, K. A., Laxon, S. W., Ridout, A. L., Wingham, D. J. & Bacon, S. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat. Geosci. 5, 194 (2012).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Ouyang, Z. et al. Sea-ice loss amplifies summertime decadal CO 2 increase in the western Arctic Ocean. Nat. Clim. Change 10, 678–684 (2020).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Qi, D. et al. Increase in acidifying water in the western Arctic Ocean. Nat. Clim. Change 7, 195 (2017).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408–1408 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Francis, J. A., Chan, W., Leathers, D. J., Miller, J. R. & Veron, D. E. Winter Northern Hemisphere weather patterns remember summer Arctic sea‐ice extent. Geophys. Res. Lett. 36, L07503 (2009).

    ADS  Article  Google Scholar 

  16. 16.

    Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid‐latitudes. Geophys. Res. Lett. 39, L06801 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572 (2017).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Kay, J. E., Holland, M. M. & Jahn, A. Inter‐annual to multi‐decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett. 38 (2011).

  19. 19.

    Zhang, R. Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc. Natl Acad. Sci. USA 112, 4570–4575 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Ding, Q. et al. Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. Nat. Geosci. 12, 28–33 (2019).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Zhang, S., Gan, T. Y. & Bush, A. B. Variability of arctic sea ice based on quantile regression and the teleconnection with large-scale climate patterns. J. Clim. 33, 4009–4025 (2020).

    ADS  Article  Google Scholar 

  22. 22.

    Deser, C. & Teng, H. Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007. Geophys. Res. Lett. 35, L02504 (2008).

    ADS  Article  Google Scholar 

  23. 23.

    Overland, J. E. & Wang, M. Large‐scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62, 1–9 (2010).

    ADS  Article  Google Scholar 

  24. 24.

    Wernli, H. & Papritz, L. Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting. Nat. Geosci. 11, 108 (2018).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Ding, Q. et al. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509, 209–212 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Topál, D. et al. An internal atmospheric process determining summertime Arctic sea ice melting in the next three decades: lessons learned from five large ensembles and multiple CMIP5 climate simulations. J. Clim. 33, 7431–7454 (2020).

    ADS  Article  Google Scholar 

  27. 27.

    Baxter, I. et al. How tropical Pacific surface cooling contributed to accelerated sea ice melt from 2007 to 2012 as ice is thinned by anthropogenic forcing. J. Clim. 32, 8583–8602 (2019).

    ADS  Article  Google Scholar 

  28. 28.

    Hu, C. et al. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin. Nat. Commun. 7, 1–9 (2016).

    ADS  CAS  Google Scholar 

  29. 29.

    Matsumura, S. & Kosaka, Y. Arctic–Eurasian climate linkage induced by tropical ocean variability. Nat. Commun. 10, 1–8 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Bonan, D. B. & Blanchard-Wrigglesworth, E. Nonstationary teleconnection between the Pacific Ocean and Arctic Sea Ice. Geophys. Res. Lett. 47, e2019GL085666 (2020).

    ADS  Article  Google Scholar 

  31. 31.

    Meehl, G. A., Chung, C. T., Arblaster, J. M., Holland, M. M. & Bitz, C. M. Tropical decadal variability and the rate of Arctic sea ice decrease. Geophys. Res. Lett. 45, 326–311,333 (2018).

    Article  Google Scholar 

  32. 32.

    McCrystall, M. R., Hosking, J. S., White, I. P. & Maycock, A. C. The impact of changes in tropical sea surface temperatures over 1979–2012 on Northern hemisphere high-latitude climate. J. Clim. 33, 5103–5121 (2020).

    ADS  Article  Google Scholar 

  33. 33.

    Screen, J. & Deser, C. Pacific Ocean variability influences the time of emergence of a seasonally ice‐free Arctic Ocean. Geophys. Res. Lett. 46, 2222–2231 (2019).

    ADS  Article  Google Scholar 

  34. 34.

    Castruccio, F. S. et al. Modulation of Arctic Sea ice loss by atmospheric teleconnections from Atlantic multidecadal variability. J. Clim. 32, 1419–1441 (2019).

    ADS  Article  Google Scholar 

  35. 35.

    Tokinaga, H., Xie, S.-P. & Mukougawa, H. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl Acad. Sci. USA 114, 6227–6232 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    L’Heureux, M. L., Kumar, A., Bell, G. D., Halpert, M. S. & Higgins, R. W. Role of the Pacific‐North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys. Res. Lett. 35, L20701 (2008).

    ADS  Article  CAS  Google Scholar 

  37. 37.

    Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather. Rev. 109, 784–812 (1981).

    ADS  Article  Google Scholar 

  38. 38.

    Kay, J. E., L’Ecuyer, T., Gettelman, A., Stephens, G. & O’Dell, C. The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett. 35, L08503 (2008).

    ADS  Article  Google Scholar 

  39. 39.

    Miles, M. W. et al. A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophys. Res. Lett. 41, 463–469 (2014).

    ADS  Article  Google Scholar 

  40. 40.

    Kopec, B. G., Feng, X., Michel, F. A. & Posmentier, E. S. Influence of sea ice on Arctic precipitation. Proc. Natl Acad. Sci. USA 113, 46–51 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Francis, J. A. & Hunter, E. New insight into the disappearing Arctic sea ice. EOS Trans. Am. Geophys. Union 87, 509–511 (2006).

    ADS  Article  Google Scholar 

  42. 42.

    Francis, J. A., Hunter, E., Key, J. R. & Wang, X. Clues to variability in Arctic minimum sea ice extent. Geophys. Res. Lett. 32, L21501 (2005).

    ADS  Article  Google Scholar 

  43. 43.

    Kapsch, M.-L., Graversen, R. G., Tjernström, M. & Bintanja, R. The effect of downwelling longwave and shortwave radiation on Arctic summer sea ice. J. Clim. 29, 1143–1159 (2016).

    ADS  Article  Google Scholar 

  44. 44.

    Krikken, F. & Hazeleger, W. Arctic energy budget in relation to sea ice variability on monthly-to-annual time scales. J. Clim. 28, 6335–6350 (2015).

    ADS  Article  Google Scholar 

  45. 45.

    Liu, Z. et al. Recent contrasting winter temperature changes over North America linked to enhanced positive Pacific North American pattern. Geophys. Res. Lett. 42, 7750–7757 (2015).

    ADS  Article  Google Scholar 

  46. 46.

    Leathers, D. J. & Palecki, M. A. The Pacific/North American teleconnection pattern and United States climate. Part II: temporal characteristics and index specification. J. Clim. 5, 707–716 (1992).

    ADS  Article  Google Scholar 

  47. 47.

    Liu, Z. et al. Pacific North American circulation pattern links external forcing and North American hydroclimatic change over the past millennium. Proc. Natl Acad. Sci. USA 114, 3340–3345 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).

    Article  Google Scholar 

  49. 49.

    Codron, F. Ekman heat transport for slab oceans. Clim. Dyn. 38, 379–389 (2012).

    Article  Google Scholar 

  50. 50.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    ADS  Article  Google Scholar 

  51. 51.

    Blackport, R., Screen, J. A., van der Wiel, K. & Bintanja, R. Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Clim. Change 9, 697–704 (2019).

    ADS  Article  Google Scholar 

  52. 52.

    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Ogi, M., Yamazaki, K. & Wallace, J. M. Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent. Geophys. Res. Lett. 37, L07701 (2010).

    ADS  Article  Google Scholar 

  54. 54.

    Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Olonscheck, D., Mauritsen, T. & Notz, D. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nat. Geosci. 12, 430 (2019).

    ADS  CAS  Article  Google Scholar 

  56. 56.

    Deser, C., Tomas, R., Alexander, M. & Lawrence, D. The seasonal atmospheric response to projected arctic sea ice loss in the late twenty-first century. J. Clim. 23, 333–351 (2010).

    ADS  Article  Google Scholar 

  57. 57.

    Corti, S., Molteni, F. & Palmer, T. Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398, 799–802 (1999).

    ADS  CAS  Article  Google Scholar 

  58. 58.

    Liu, Z., He, X., Ma, W. & Wang, Y. Robust increases in extreme Pacific North American events under greenhouse warming. Geophys. Res. Lett. 47, e2019GL086309 (2020).

    ADS  Google Scholar 

  59. 59.

    Horel, J. D. & Wallace, J. M. Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Weather Rev. 109, 813–829 (1981).

    ADS  Article  Google Scholar 

  60. 60.

    Zhang, R. & Delworth, T. L. Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett. 34, L23708 (2007).

    ADS  Google Scholar 

  61. 61.

    Hubeny, J. B., King, J. W. & Reddin, M. Northeast US precipitation variability and North American climate teleconnections interpreted from late Holocene varved sediments. Proc. Natl Acad. Sci. USA 108, 17895–17900 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Meier, W. et al. NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 2. Natl Snow Ice Data Cent. 10, N55M63M51 (2013).

    Google Scholar 

  63. 63.

    Dee, D. et al. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    ADS  Article  Google Scholar 

  64. 64.

    Hourdin, F. et al. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn. 27, 787–813 (2006).

    Article  Google Scholar 

  65. 65.

    Gates, W. L. An AMS continuing series: global change–AMIP: the atmospheric model intercomparison project. Bull. Am. Meteorol. Soc. 73, 1962–1970 (1992).

    ADS  Article  Google Scholar 

  66. 66.

    Uppala, S. M. et al. The ERA‐40 re‐analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005).

    ADS  Article  Google Scholar 

  67. 67.

    Risi, C., Bony, S., Vimeux, F. & Jouzel, J. Water‐stable isotopes in the LMDZ4 general circulation model: Model evaluation for present‐day and past climates and applications to climatic interpretations of tropical isotopic records. J. Geophys. Res. 115, D12118 (2010).

    ADS  Article  CAS  Google Scholar 

  68. 68.

    Barnston, A. & Livezey, R. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather. Rev. 115, 1083–1126 (1987).

    ADS  Article  Google Scholar 

  69. 69.

    Stoner, A. M. K., Hayhoe, K. & Wuebbles, D. J. Assessing general circulation model simulations of atmospheric teleconnection patterns. J. Clim. 22, 4348–4372 (2009).

    ADS  Article  Google Scholar 

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel